File size: 1,662 Bytes
e60034f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cde0c3b
 
 
e60034f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cde0c3b
 
 
 
e60034f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: openai/whisper-small
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# openai/whisper-small

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Hanhpt23/MultiMed dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7176
- Wer: 20.2138
- Cer: 14.0973

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer     | Cer     |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 0.5854        | 1.0   | 4626  | 0.7068          | 33.7558 | 24.6972 |
| 0.3884        | 2.0   | 9252  | 0.6462          | 26.2113 | 19.0993 |
| 0.119         | 3.0   | 13878 | 0.6747          | 21.5288 | 15.1996 |
| 0.0365        | 4.0   | 18504 | 0.7176          | 20.2138 | 14.0973 |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1