--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: openai/whisper-small results: [] --- # openai/whisper-small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Hanhpt23/MultiMed dataset. It achieves the following results on the evaluation set: - Loss: 0.7193 - Wer: 19.9744 - Cer: 14.0186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.6396 | 1.0 | 4626 | 0.7132 | 31.7615 | 22.7290 | | 0.3406 | 2.0 | 9252 | 0.6568 | 25.4179 | 18.0443 | | 0.1281 | 3.0 | 13878 | 0.6780 | 22.2623 | 15.5534 | | 0.026 | 4.0 | 18504 | 0.7193 | 19.9744 | 14.0186 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.19.1