|
|
|
import pandas as pd |
|
from sklearn.preprocessing import LabelEncoder |
|
from tensorflow.keras.preprocessing.sequence import pad_sequences |
|
import torch |
|
import torch.nn as nn |
|
from torch.utils.data import DataLoader, TensorDataset |
|
import torch.optim as optim |
|
import matplotlib.pyplot as plt |
|
import time |
|
|
|
|
|
df = pd.read_csv('C:/My Projects/MorseH Model/morse_data.csv') |
|
|
|
|
|
|
|
label_encoder = LabelEncoder() |
|
df['Character'] = label_encoder.fit_transform(df['Character']) |
|
|
|
|
|
morse_dict = {'.': 0, '-': 1, ' ': 2} |
|
df['Morse Code Enc'] = df['Morse Code'].apply(lambda x: [morse_dict[char] for char in x]) |
|
|
|
|
|
max_length = df['Morse Code Enc'].apply(len).max() |
|
df['Morse Code Enc'] = pad_sequences(df['Morse Code Enc'], maxlen=max_length, padding='post', value=2).tolist() |
|
|
|
|
|
X = torch.tensor(df['Character'].values, dtype=torch.long) |
|
y = torch.tensor(df['Morse Code Enc'].tolist(), dtype=torch.long) |
|
|
|
|
|
class MorseHModel(nn.Module): |
|
def __init__(self, input_size, output_size, max_length): |
|
super(MorseHModel, self).__init__() |
|
self.emmbedding = nn.Embedding(input_size, 16) |
|
self.fc1 = nn.Linear(16, 32) |
|
self.fc2 = nn.Linear(32, output_size * max_length) |
|
self.output_size = output_size |
|
self.max_length = max_length |
|
|
|
def forward(self, x): |
|
x = self.emmbedding(x).view(-1, 16) |
|
x = torch.relu(self.fc1(x)) |
|
x = self.fc2(x) |
|
return x.view(-1, self.max_length, self.output_size) |
|
|
|
input_size = len(label_encoder.classes_) |
|
output_size = 3 |
|
model = MorseHModel(input_size=input_size, output_size=output_size, max_length=max_length) |
|
|
|
|
|
not_pretrained = True |
|
try: |
|
model.load_state_dict(torch.load('morse_model_weights.pth', weights_only=True)) |
|
not_pretrained = False |
|
except FileNotFoundError: |
|
print("Pre-trained weights not found, starting training from scratch.") |
|
|
|
|
|
dataset = TensorDataset(X, y) |
|
data_loader = DataLoader(dataset, batch_size=16, shuffle=True) |
|
|
|
|
|
criterion = nn.CrossEntropyLoss() |
|
optimizer = optim.Adam(model.parameters(), lr=0.001) |
|
|
|
|
|
num_epochs = 20 |
|
if not_pretrained: |
|
for epoch in range(num_epochs): |
|
model.train() |
|
total_loss = 0.0 |
|
for inputs, targets in data_loader: |
|
optimizer.zero_grad() |
|
outputs = model(inputs) |
|
|
|
targets = targets.view(-1) |
|
outputs = outputs.view(-1, output_size) |
|
|
|
loss = criterion(outputs, targets) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
total_loss += loss.item() |
|
|
|
print(f"Epoch [{epoch + 1}/{num_epochs}], Loss: {total_loss / len(data_loader):.4f}") |
|
|
|
|
|
model.eval() |
|
sample_size = 10 |
|
correct_predictions = 0 |
|
total_elements = 0 |
|
|
|
with torch.no_grad(): |
|
for i in range(sample_size): |
|
input_sample = X[i].unsqueeze(0) |
|
target_sample = y[i] |
|
|
|
output = model(input_sample) |
|
_, predicted = torch.max(output.data, 2) |
|
|
|
total_elements += target_sample.size(0) |
|
correct_predictions += (predicted.squeeze() == target_sample).sum().item() |
|
|
|
accuracy = 100 * correct_predictions / total_elements |
|
print(f"Accuracy on sample of training set: {accuracy:.2f}%") |
|
|
|
|
|
def predict(character_index): |
|
"""Predict the Morse code sequence for a given character index.""" |
|
with torch.no_grad(): |
|
output = model(torch.tensor([character_index])) |
|
_, prediction = torch.max(output, 2) |
|
return prediction[0] |
|
|
|
def decode(prediction): |
|
"""Decode a prediction from numerical values to Morse code symbols.""" |
|
prediction = [p for p in prediction if p != 2] |
|
return ''.join('.' if c == 0 else '-' for c in prediction) |
|
|
|
def encode(word): |
|
"""Encode a word into character indices.""" |
|
return [label_encoder.transform([char])[0] for char in word.upper()] |
|
|
|
def get_morse_word(word): |
|
"""Convert a word into Morse code using the model predictions.""" |
|
char_indices = encode(word) |
|
morse_sequence = [] |
|
for index in char_indices: |
|
pred = predict(index) |
|
morse_sequence.append(decode(pred)) |
|
morse_sequence.append(' ') |
|
return ''.join(morse_sequence) |
|
|
|
|
|
user_input = input("Type your message: ") |
|
response = [get_morse_word(word) + ' ' for word in user_input.split()] |
|
response = ''.join(response) |
|
|
|
print("Response: ", response) |
|
|
|
|
|
|
|
|
|
|
|
torch.save(model.state_dict(), 'morse_model_weights.pth') |
|
torch.save(model, 'complete_model.pth') |
|
|