Harinivas-28
commited on
Commit
•
1895c5d
1
Parent(s):
fce1b1a
Adding MorseHModel and documentation
Browse files- MorseH_Model.py +148 -0
- README.md +30 -0
- complete_model.pth +3 -0
- config.json +6 -0
- model.ipynb +859 -0
- morse_data.csv +55 -0
- morse_model_weights.pth +3 -0
- pytorch_model.bin +3 -0
MorseH_Model.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# IMPORTS
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.preprocessing import LabelEncoder
|
4 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from torch.utils.data import DataLoader, TensorDataset
|
8 |
+
import torch.optim as optim
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import time
|
11 |
+
|
12 |
+
# LOAD DATA
|
13 |
+
df = pd.read_csv('C:/My Projects/MorseH Model/morse_data.csv')
|
14 |
+
|
15 |
+
# ENCODE CHARACTERS AND MORSE CODE
|
16 |
+
# Encoding characters as integers
|
17 |
+
label_encoder = LabelEncoder()
|
18 |
+
df['Character'] = label_encoder.fit_transform(df['Character'])
|
19 |
+
|
20 |
+
# Encoding Morse Code
|
21 |
+
morse_dict = {'.': 0, '-': 1, ' ': 2} # '.' -> 0, '-' -> 1, ' ' -> 2 for padding
|
22 |
+
df['Morse Code Enc'] = df['Morse Code'].apply(lambda x: [morse_dict[char] for char in x])
|
23 |
+
|
24 |
+
# Pad Morse Code sequences to equal length
|
25 |
+
max_length = df['Morse Code Enc'].apply(len).max()
|
26 |
+
df['Morse Code Enc'] = pad_sequences(df['Morse Code Enc'], maxlen=max_length, padding='post', value=2).tolist()
|
27 |
+
|
28 |
+
# PREPARE FEATURES AND LABELS
|
29 |
+
X = torch.tensor(df['Character'].values, dtype=torch.long)
|
30 |
+
y = torch.tensor(df['Morse Code Enc'].tolist(), dtype=torch.long)
|
31 |
+
|
32 |
+
# MODEL DEFINITION
|
33 |
+
class MorseHModel(nn.Module):
|
34 |
+
def __init__(self, input_size, output_size, max_length):
|
35 |
+
super(MorseHModel, self).__init__()
|
36 |
+
self.emmbedding = nn.Embedding(input_size, 16)
|
37 |
+
self.fc1 = nn.Linear(16, 32)
|
38 |
+
self.fc2 = nn.Linear(32, output_size * max_length)
|
39 |
+
self.output_size = output_size
|
40 |
+
self.max_length = max_length
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
x = self.emmbedding(x).view(-1, 16)
|
44 |
+
x = torch.relu(self.fc1(x))
|
45 |
+
x = self.fc2(x)
|
46 |
+
return x.view(-1, self.max_length, self.output_size)
|
47 |
+
|
48 |
+
input_size = len(label_encoder.classes_)
|
49 |
+
output_size = 3
|
50 |
+
model = MorseHModel(input_size=input_size, output_size=output_size, max_length=max_length)
|
51 |
+
|
52 |
+
# Load the model weights if available
|
53 |
+
not_pretrained = True
|
54 |
+
try:
|
55 |
+
model.load_state_dict(torch.load('morse_model_weights.pth', weights_only=True))
|
56 |
+
not_pretrained = False
|
57 |
+
except FileNotFoundError:
|
58 |
+
print("Pre-trained weights not found, starting training from scratch.")
|
59 |
+
|
60 |
+
# CREATE DATALOADER
|
61 |
+
dataset = TensorDataset(X, y)
|
62 |
+
data_loader = DataLoader(dataset, batch_size=16, shuffle=True)
|
63 |
+
|
64 |
+
# LOSS FUNCTION AND OPTIMIZER
|
65 |
+
criterion = nn.CrossEntropyLoss()
|
66 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
67 |
+
|
68 |
+
# TRAINING LOOP
|
69 |
+
num_epochs = 20
|
70 |
+
if not_pretrained:
|
71 |
+
for epoch in range(num_epochs):
|
72 |
+
model.train()
|
73 |
+
total_loss = 0.0
|
74 |
+
for inputs, targets in data_loader:
|
75 |
+
optimizer.zero_grad()
|
76 |
+
outputs = model(inputs)
|
77 |
+
|
78 |
+
targets = targets.view(-1)
|
79 |
+
outputs = outputs.view(-1, output_size)
|
80 |
+
|
81 |
+
loss = criterion(outputs, targets)
|
82 |
+
loss.backward()
|
83 |
+
optimizer.step()
|
84 |
+
|
85 |
+
total_loss += loss.item()
|
86 |
+
|
87 |
+
print(f"Epoch [{epoch + 1}/{num_epochs}], Loss: {total_loss / len(data_loader):.4f}")
|
88 |
+
|
89 |
+
# MODEL EVALUATION
|
90 |
+
model.eval()
|
91 |
+
sample_size = 10
|
92 |
+
correct_predictions = 0
|
93 |
+
total_elements = 0
|
94 |
+
|
95 |
+
with torch.no_grad():
|
96 |
+
for i in range(sample_size):
|
97 |
+
input_sample = X[i].unsqueeze(0)
|
98 |
+
target_sample = y[i]
|
99 |
+
|
100 |
+
output = model(input_sample)
|
101 |
+
_, predicted = torch.max(output.data, 2)
|
102 |
+
|
103 |
+
total_elements += target_sample.size(0)
|
104 |
+
correct_predictions += (predicted.squeeze() == target_sample).sum().item()
|
105 |
+
|
106 |
+
accuracy = 100 * correct_predictions / total_elements
|
107 |
+
print(f"Accuracy on sample of training set: {accuracy:.2f}%")
|
108 |
+
|
109 |
+
# INFERENCE FUNCTIONS
|
110 |
+
def predict(character_index):
|
111 |
+
"""Predict the Morse code sequence for a given character index."""
|
112 |
+
with torch.no_grad():
|
113 |
+
output = model(torch.tensor([character_index]))
|
114 |
+
_, prediction = torch.max(output, 2)
|
115 |
+
return prediction[0]
|
116 |
+
|
117 |
+
def decode(prediction):
|
118 |
+
"""Decode a prediction from numerical values to Morse code symbols."""
|
119 |
+
prediction = [p for p in prediction if p != 2]
|
120 |
+
return ''.join('.' if c == 0 else '-' for c in prediction)
|
121 |
+
|
122 |
+
def encode(word):
|
123 |
+
"""Encode a word into character indices."""
|
124 |
+
return [label_encoder.transform([char])[0] for char in word.upper()]
|
125 |
+
|
126 |
+
def get_morse_word(word):
|
127 |
+
"""Convert a word into Morse code using the model predictions."""
|
128 |
+
char_indices = encode(word)
|
129 |
+
morse_sequence = []
|
130 |
+
for index in char_indices:
|
131 |
+
pred = predict(index)
|
132 |
+
morse_sequence.append(decode(pred))
|
133 |
+
morse_sequence.append(' ')
|
134 |
+
return ''.join(morse_sequence)
|
135 |
+
|
136 |
+
# USER INPUT INFERENCE
|
137 |
+
user_input = input("Type your message: ")
|
138 |
+
response = [get_morse_word(word) + ' ' for word in user_input.split()]
|
139 |
+
response = ''.join(response)
|
140 |
+
|
141 |
+
print("Response: ", response)
|
142 |
+
# for char in response:
|
143 |
+
# print(char, end="")
|
144 |
+
# time.sleep(10*pow(10, -3)) # Delay for visualization
|
145 |
+
|
146 |
+
# SAVE MODEL
|
147 |
+
torch.save(model.state_dict(), 'morse_model_weights.pth')
|
148 |
+
torch.save(model, 'complete_model.pth')
|
README.md
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MorseHModel
|
2 |
+
|
3 |
+
This model is designed to convert textual characters into Morse code symbols (dots, dashes, and spaces) using a custom neural network in PyTorch.
|
4 |
+
|
5 |
+
## Model Architecture
|
6 |
+
The model uses an embedding layer followed by two fully connected layers to predict Morse code encodings.
|
7 |
+
|
8 |
+
### Model Inputs and Outputs
|
9 |
+
- **Inputs:** Character indices of textual input.
|
10 |
+
- **Outputs:** Morse code sequence for each character in the input.
|
11 |
+
|
12 |
+
### Training and Dataset
|
13 |
+
- **Dataset:** Custom Morse code dataset.
|
14 |
+
- **Training:** Trained for 20 epochs with a batch size of 16.
|
15 |
+
|
16 |
+
### Usage
|
17 |
+
Below is an example of how to use the model.
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
21 |
+
import torch
|
22 |
+
|
23 |
+
# Load model and tokenizer
|
24 |
+
model = torch.load("morse_model_weights.pth")
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained("username/MorseH_Model")
|
26 |
+
|
27 |
+
# Predict Morse code
|
28 |
+
input_text = "HELLO"
|
29 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
30 |
+
outputs = model(**inputs)
|
complete_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9990aec7a43bc52b3ad9ffb120987f7bc8a8ad251bab82630e7a625dd1fcbd3f
|
3 |
+
size 12683
|
config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "morseh_model",
|
3 |
+
"input_size": 26,
|
4 |
+
"output_size": 3,
|
5 |
+
"max_length": 10
|
6 |
+
}
|
model.ipynb
ADDED
@@ -0,0 +1,859 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"IMPORTS"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": 3,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"import pandas as pd\n",
|
17 |
+
"from sklearn.preprocessing import LabelEncoder\n",
|
18 |
+
"from tensorflow.keras.preprocessing.sequence import pad_sequences\n",
|
19 |
+
"from sklearn.model_selection import train_test_split\n",
|
20 |
+
"import torch\n",
|
21 |
+
"import torch.nn as nn\n",
|
22 |
+
"from torch.utils.data import DataLoader, TensorDataset\n",
|
23 |
+
"import torch.optim as optim\n",
|
24 |
+
"import matplotlib.pyplot as plt"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "markdown",
|
29 |
+
"metadata": {},
|
30 |
+
"source": [
|
31 |
+
"LOAD DATA"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"cell_type": "code",
|
36 |
+
"execution_count": 4,
|
37 |
+
"metadata": {},
|
38 |
+
"outputs": [
|
39 |
+
{
|
40 |
+
"data": {
|
41 |
+
"text/html": [
|
42 |
+
"<div>\n",
|
43 |
+
"<style scoped>\n",
|
44 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
45 |
+
" vertical-align: middle;\n",
|
46 |
+
" }\n",
|
47 |
+
"\n",
|
48 |
+
" .dataframe tbody tr th {\n",
|
49 |
+
" vertical-align: top;\n",
|
50 |
+
" }\n",
|
51 |
+
"\n",
|
52 |
+
" .dataframe thead th {\n",
|
53 |
+
" text-align: right;\n",
|
54 |
+
" }\n",
|
55 |
+
"</style>\n",
|
56 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
57 |
+
" <thead>\n",
|
58 |
+
" <tr style=\"text-align: right;\">\n",
|
59 |
+
" <th></th>\n",
|
60 |
+
" <th>Character</th>\n",
|
61 |
+
" <th>Morse Code</th>\n",
|
62 |
+
" </tr>\n",
|
63 |
+
" </thead>\n",
|
64 |
+
" <tbody>\n",
|
65 |
+
" <tr>\n",
|
66 |
+
" <th>0</th>\n",
|
67 |
+
" <td>A</td>\n",
|
68 |
+
" <td>.-</td>\n",
|
69 |
+
" </tr>\n",
|
70 |
+
" <tr>\n",
|
71 |
+
" <th>1</th>\n",
|
72 |
+
" <td>B</td>\n",
|
73 |
+
" <td>-...</td>\n",
|
74 |
+
" </tr>\n",
|
75 |
+
" <tr>\n",
|
76 |
+
" <th>2</th>\n",
|
77 |
+
" <td>C</td>\n",
|
78 |
+
" <td>-.-.</td>\n",
|
79 |
+
" </tr>\n",
|
80 |
+
" <tr>\n",
|
81 |
+
" <th>3</th>\n",
|
82 |
+
" <td>D</td>\n",
|
83 |
+
" <td>-..</td>\n",
|
84 |
+
" </tr>\n",
|
85 |
+
" <tr>\n",
|
86 |
+
" <th>4</th>\n",
|
87 |
+
" <td>E</td>\n",
|
88 |
+
" <td>.</td>\n",
|
89 |
+
" </tr>\n",
|
90 |
+
" </tbody>\n",
|
91 |
+
"</table>\n",
|
92 |
+
"</div>"
|
93 |
+
],
|
94 |
+
"text/plain": [
|
95 |
+
" Character Morse Code\n",
|
96 |
+
"0 A .-\n",
|
97 |
+
"1 B -...\n",
|
98 |
+
"2 C -.-.\n",
|
99 |
+
"3 D -..\n",
|
100 |
+
"4 E ."
|
101 |
+
]
|
102 |
+
},
|
103 |
+
"execution_count": 4,
|
104 |
+
"metadata": {},
|
105 |
+
"output_type": "execute_result"
|
106 |
+
}
|
107 |
+
],
|
108 |
+
"source": [
|
109 |
+
"df = pd.read_csv('C:/My Projects/MorseH Model/morse_data.csv')\n",
|
110 |
+
"df.head()"
|
111 |
+
]
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"cell_type": "markdown",
|
115 |
+
"metadata": {},
|
116 |
+
"source": [
|
117 |
+
"Checking Data types"
|
118 |
+
]
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"cell_type": "code",
|
122 |
+
"execution_count": 5,
|
123 |
+
"metadata": {},
|
124 |
+
"outputs": [
|
125 |
+
{
|
126 |
+
"data": {
|
127 |
+
"text/plain": [
|
128 |
+
"(str, str)"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
"execution_count": 5,
|
132 |
+
"metadata": {},
|
133 |
+
"output_type": "execute_result"
|
134 |
+
}
|
135 |
+
],
|
136 |
+
"source": [
|
137 |
+
"type(df['Character'][0]), type(df['Morse Code'][0])"
|
138 |
+
]
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"cell_type": "markdown",
|
142 |
+
"metadata": {},
|
143 |
+
"source": [
|
144 |
+
"ENCODE THE STRINGS"
|
145 |
+
]
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"cell_type": "code",
|
149 |
+
"execution_count": 6,
|
150 |
+
"metadata": {},
|
151 |
+
"outputs": [],
|
152 |
+
"source": [
|
153 |
+
"lb = LabelEncoder()\n",
|
154 |
+
"df['Character'] = lb.fit_transform(df['Character'])"
|
155 |
+
]
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"cell_type": "markdown",
|
159 |
+
"metadata": {},
|
160 |
+
"source": [
|
161 |
+
"ENCODE THE MORSE CODES <br>\n",
|
162 |
+
"'.' -> 0, <br>\n",
|
163 |
+
"'-' -> 1, <br>\n",
|
164 |
+
"' ' -> 2 PADDING"
|
165 |
+
]
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"cell_type": "code",
|
169 |
+
"execution_count": 7,
|
170 |
+
"metadata": {},
|
171 |
+
"outputs": [
|
172 |
+
{
|
173 |
+
"data": {
|
174 |
+
"text/html": [
|
175 |
+
"<div>\n",
|
176 |
+
"<style scoped>\n",
|
177 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
178 |
+
" vertical-align: middle;\n",
|
179 |
+
" }\n",
|
180 |
+
"\n",
|
181 |
+
" .dataframe tbody tr th {\n",
|
182 |
+
" vertical-align: top;\n",
|
183 |
+
" }\n",
|
184 |
+
"\n",
|
185 |
+
" .dataframe thead th {\n",
|
186 |
+
" text-align: right;\n",
|
187 |
+
" }\n",
|
188 |
+
"</style>\n",
|
189 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
190 |
+
" <thead>\n",
|
191 |
+
" <tr style=\"text-align: right;\">\n",
|
192 |
+
" <th></th>\n",
|
193 |
+
" <th>Character</th>\n",
|
194 |
+
" <th>Morse Code</th>\n",
|
195 |
+
" <th>Morse Code Enc</th>\n",
|
196 |
+
" </tr>\n",
|
197 |
+
" </thead>\n",
|
198 |
+
" <tbody>\n",
|
199 |
+
" <tr>\n",
|
200 |
+
" <th>0</th>\n",
|
201 |
+
" <td>25</td>\n",
|
202 |
+
" <td>.-</td>\n",
|
203 |
+
" <td>[0, 1]</td>\n",
|
204 |
+
" </tr>\n",
|
205 |
+
" <tr>\n",
|
206 |
+
" <th>1</th>\n",
|
207 |
+
" <td>26</td>\n",
|
208 |
+
" <td>-...</td>\n",
|
209 |
+
" <td>[1, 0, 0, 0]</td>\n",
|
210 |
+
" </tr>\n",
|
211 |
+
" <tr>\n",
|
212 |
+
" <th>2</th>\n",
|
213 |
+
" <td>27</td>\n",
|
214 |
+
" <td>-.-.</td>\n",
|
215 |
+
" <td>[1, 0, 1, 0]</td>\n",
|
216 |
+
" </tr>\n",
|
217 |
+
" <tr>\n",
|
218 |
+
" <th>3</th>\n",
|
219 |
+
" <td>28</td>\n",
|
220 |
+
" <td>-..</td>\n",
|
221 |
+
" <td>[1, 0, 0]</td>\n",
|
222 |
+
" </tr>\n",
|
223 |
+
" <tr>\n",
|
224 |
+
" <th>4</th>\n",
|
225 |
+
" <td>29</td>\n",
|
226 |
+
" <td>.</td>\n",
|
227 |
+
" <td>[0]</td>\n",
|
228 |
+
" </tr>\n",
|
229 |
+
" </tbody>\n",
|
230 |
+
"</table>\n",
|
231 |
+
"</div>"
|
232 |
+
],
|
233 |
+
"text/plain": [
|
234 |
+
" Character Morse Code Morse Code Enc\n",
|
235 |
+
"0 25 .- [0, 1]\n",
|
236 |
+
"1 26 -... [1, 0, 0, 0]\n",
|
237 |
+
"2 27 -.-. [1, 0, 1, 0]\n",
|
238 |
+
"3 28 -.. [1, 0, 0]\n",
|
239 |
+
"4 29 . [0]"
|
240 |
+
]
|
241 |
+
},
|
242 |
+
"execution_count": 7,
|
243 |
+
"metadata": {},
|
244 |
+
"output_type": "execute_result"
|
245 |
+
}
|
246 |
+
],
|
247 |
+
"source": [
|
248 |
+
"morse_dict = {'.':0,'-':1,' ':2}\n",
|
249 |
+
"df['Morse Code Enc'] = df['Morse Code'].apply(lambda x: [morse_dict[char] for char in x])\n",
|
250 |
+
"df.head()"
|
251 |
+
]
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"cell_type": "code",
|
255 |
+
"execution_count": 8,
|
256 |
+
"metadata": {},
|
257 |
+
"outputs": [
|
258 |
+
{
|
259 |
+
"data": {
|
260 |
+
"text/plain": [
|
261 |
+
"8"
|
262 |
+
]
|
263 |
+
},
|
264 |
+
"execution_count": 8,
|
265 |
+
"metadata": {},
|
266 |
+
"output_type": "execute_result"
|
267 |
+
}
|
268 |
+
],
|
269 |
+
"source": [
|
270 |
+
"max_length = df['Morse Code Enc'].apply(len).max()\n",
|
271 |
+
"max_length"
|
272 |
+
]
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"cell_type": "markdown",
|
276 |
+
"metadata": {},
|
277 |
+
"source": [
|
278 |
+
"Adding Padding to equalize the length of each morse code enocoded to max length"
|
279 |
+
]
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"cell_type": "code",
|
283 |
+
"execution_count": 9,
|
284 |
+
"metadata": {},
|
285 |
+
"outputs": [
|
286 |
+
{
|
287 |
+
"data": {
|
288 |
+
"text/html": [
|
289 |
+
"<div>\n",
|
290 |
+
"<style scoped>\n",
|
291 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
292 |
+
" vertical-align: middle;\n",
|
293 |
+
" }\n",
|
294 |
+
"\n",
|
295 |
+
" .dataframe tbody tr th {\n",
|
296 |
+
" vertical-align: top;\n",
|
297 |
+
" }\n",
|
298 |
+
"\n",
|
299 |
+
" .dataframe thead th {\n",
|
300 |
+
" text-align: right;\n",
|
301 |
+
" }\n",
|
302 |
+
"</style>\n",
|
303 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
304 |
+
" <thead>\n",
|
305 |
+
" <tr style=\"text-align: right;\">\n",
|
306 |
+
" <th></th>\n",
|
307 |
+
" <th>Character</th>\n",
|
308 |
+
" <th>Morse Code</th>\n",
|
309 |
+
" <th>Morse Code Enc</th>\n",
|
310 |
+
" </tr>\n",
|
311 |
+
" </thead>\n",
|
312 |
+
" <tbody>\n",
|
313 |
+
" <tr>\n",
|
314 |
+
" <th>0</th>\n",
|
315 |
+
" <td>25</td>\n",
|
316 |
+
" <td>.-</td>\n",
|
317 |
+
" <td>[0, 1, 2, 2, 2, 2, 2, 2]</td>\n",
|
318 |
+
" </tr>\n",
|
319 |
+
" <tr>\n",
|
320 |
+
" <th>1</th>\n",
|
321 |
+
" <td>26</td>\n",
|
322 |
+
" <td>-...</td>\n",
|
323 |
+
" <td>[1, 0, 0, 0, 2, 2, 2, 2]</td>\n",
|
324 |
+
" </tr>\n",
|
325 |
+
" <tr>\n",
|
326 |
+
" <th>2</th>\n",
|
327 |
+
" <td>27</td>\n",
|
328 |
+
" <td>-.-.</td>\n",
|
329 |
+
" <td>[1, 0, 1, 0, 2, 2, 2, 2]</td>\n",
|
330 |
+
" </tr>\n",
|
331 |
+
" <tr>\n",
|
332 |
+
" <th>3</th>\n",
|
333 |
+
" <td>28</td>\n",
|
334 |
+
" <td>-..</td>\n",
|
335 |
+
" <td>[1, 0, 0, 2, 2, 2, 2, 2]</td>\n",
|
336 |
+
" </tr>\n",
|
337 |
+
" <tr>\n",
|
338 |
+
" <th>4</th>\n",
|
339 |
+
" <td>29</td>\n",
|
340 |
+
" <td>.</td>\n",
|
341 |
+
" <td>[0, 2, 2, 2, 2, 2, 2, 2]</td>\n",
|
342 |
+
" </tr>\n",
|
343 |
+
" </tbody>\n",
|
344 |
+
"</table>\n",
|
345 |
+
"</div>"
|
346 |
+
],
|
347 |
+
"text/plain": [
|
348 |
+
" Character Morse Code Morse Code Enc\n",
|
349 |
+
"0 25 .- [0, 1, 2, 2, 2, 2, 2, 2]\n",
|
350 |
+
"1 26 -... [1, 0, 0, 0, 2, 2, 2, 2]\n",
|
351 |
+
"2 27 -.-. [1, 0, 1, 0, 2, 2, 2, 2]\n",
|
352 |
+
"3 28 -.. [1, 0, 0, 2, 2, 2, 2, 2]\n",
|
353 |
+
"4 29 . [0, 2, 2, 2, 2, 2, 2, 2]"
|
354 |
+
]
|
355 |
+
},
|
356 |
+
"execution_count": 9,
|
357 |
+
"metadata": {},
|
358 |
+
"output_type": "execute_result"
|
359 |
+
}
|
360 |
+
],
|
361 |
+
"source": [
|
362 |
+
"df['Morse Code Enc'] = pad_sequences(df['Morse Code Enc'],maxlen = max_length, padding='post', value=2).tolist()\n",
|
363 |
+
"df.head()"
|
364 |
+
]
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"cell_type": "markdown",
|
368 |
+
"metadata": {},
|
369 |
+
"source": [
|
370 |
+
"Taking Features and Labels"
|
371 |
+
]
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"cell_type": "code",
|
375 |
+
"execution_count": 10,
|
376 |
+
"metadata": {},
|
377 |
+
"outputs": [],
|
378 |
+
"source": [
|
379 |
+
"X = df['Character'].values\n",
|
380 |
+
"y = df['Morse Code Enc'].tolist()"
|
381 |
+
]
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"cell_type": "markdown",
|
385 |
+
"metadata": {},
|
386 |
+
"source": [
|
387 |
+
"Splitting Data (Traditional Way) (NOT PREFERRED) (Scroll Down for torch approach)"
|
388 |
+
]
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"cell_type": "code",
|
392 |
+
"execution_count": 11,
|
393 |
+
"metadata": {},
|
394 |
+
"outputs": [],
|
395 |
+
"source": [
|
396 |
+
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)"
|
397 |
+
]
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"cell_type": "code",
|
401 |
+
"execution_count": 12,
|
402 |
+
"metadata": {},
|
403 |
+
"outputs": [],
|
404 |
+
"source": [
|
405 |
+
"X_train_tensor = torch.tensor(X_train, dtype=torch.long).view(-1, 1)\n",
|
406 |
+
"X_test_tensor = torch.tensor(X_test, dtype=torch.long)\n",
|
407 |
+
"y_train_tensor = torch.tensor(y_train, dtype=torch.long).view(-1, 1)\n",
|
408 |
+
"y_test_tensor = torch.tensor(y_test, dtype=torch.long)"
|
409 |
+
]
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"cell_type": "code",
|
413 |
+
"execution_count": 13,
|
414 |
+
"metadata": {},
|
415 |
+
"outputs": [],
|
416 |
+
"source": [
|
417 |
+
"class MorseH_Model(nn.Module):\n",
|
418 |
+
" def __init__(self, input_size, output_size, max_length):\n",
|
419 |
+
" super(MorseH_Model, self).__init__()\n",
|
420 |
+
" # Embedding layer to represent each character as a vector\n",
|
421 |
+
" self.emmbedding = nn.Embedding(input_size, 16)\n",
|
422 |
+
"\n",
|
423 |
+
" # Linear Layers\n",
|
424 |
+
" self.fc1 = nn.Linear(16, 32)\n",
|
425 |
+
" self.fc2 = nn.Linear(32, output_size*max_length)\n",
|
426 |
+
"\n",
|
427 |
+
" #Reshaping output shape to match morse code shape\n",
|
428 |
+
" self.output_size = output_size\n",
|
429 |
+
" self.max_length = max_length\n",
|
430 |
+
" \n",
|
431 |
+
" def forward(self, x):\n",
|
432 |
+
" # Pass input through embedding layer\n",
|
433 |
+
" x = self.emmbedding(x).view(-1, 16)\n",
|
434 |
+
" x = torch.relu(self.fc1(x))\n",
|
435 |
+
" x = self.fc2(x)\n",
|
436 |
+
"\n",
|
437 |
+
" return x.view(-1, self.max_length, self.output_size)"
|
438 |
+
]
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"cell_type": "code",
|
442 |
+
"execution_count": 14,
|
443 |
+
"metadata": {},
|
444 |
+
"outputs": [
|
445 |
+
{
|
446 |
+
"data": {
|
447 |
+
"text/plain": [
|
448 |
+
"MorseH_Model(\n",
|
449 |
+
" (emmbedding): Embedding(54, 16)\n",
|
450 |
+
" (fc1): Linear(in_features=16, out_features=32, bias=True)\n",
|
451 |
+
" (fc2): Linear(in_features=32, out_features=24, bias=True)\n",
|
452 |
+
")"
|
453 |
+
]
|
454 |
+
},
|
455 |
+
"execution_count": 14,
|
456 |
+
"metadata": {},
|
457 |
+
"output_type": "execute_result"
|
458 |
+
}
|
459 |
+
],
|
460 |
+
"source": [
|
461 |
+
"input_size = len(lb.classes_)\n",
|
462 |
+
"output_size = 3\n",
|
463 |
+
"max_len = max_length\n",
|
464 |
+
"model = MorseH_Model(input_size=input_size, output_size=output_size, max_length=max_len)\n",
|
465 |
+
"# Load the weights into a new model\n",
|
466 |
+
"model.load_state_dict(torch.load('morse_model_weights.pth', weights_only=True))\n",
|
467 |
+
"model"
|
468 |
+
]
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"cell_type": "markdown",
|
472 |
+
"metadata": {},
|
473 |
+
"source": [
|
474 |
+
"Prepare Data"
|
475 |
+
]
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"cell_type": "code",
|
479 |
+
"execution_count": 15,
|
480 |
+
"metadata": {},
|
481 |
+
"outputs": [],
|
482 |
+
"source": [
|
483 |
+
"\n",
|
484 |
+
"X = torch.tensor(df['Character'].values, dtype=torch.long)\n",
|
485 |
+
"y = torch.tensor(df['Morse Code Enc'].tolist(), dtype=torch.long)\n",
|
486 |
+
"\n",
|
487 |
+
"data = TensorDataset(X, y)\n",
|
488 |
+
"loader = DataLoader(data, batch_size=16, shuffle=True)"
|
489 |
+
]
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"cell_type": "markdown",
|
493 |
+
"metadata": {},
|
494 |
+
"source": [
|
495 |
+
"Define Loss Function and Optimizer"
|
496 |
+
]
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"cell_type": "code",
|
500 |
+
"execution_count": 16,
|
501 |
+
"metadata": {},
|
502 |
+
"outputs": [],
|
503 |
+
"source": [
|
504 |
+
"criterion = nn.CrossEntropyLoss()\n",
|
505 |
+
"optimizer = optim.Adam(model.parameters(), lr = 0.001)"
|
506 |
+
]
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"cell_type": "markdown",
|
510 |
+
"metadata": {},
|
511 |
+
"source": [
|
512 |
+
"Training Loop"
|
513 |
+
]
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"cell_type": "code",
|
517 |
+
"execution_count": 17,
|
518 |
+
"metadata": {},
|
519 |
+
"outputs": [],
|
520 |
+
"source": [
|
521 |
+
"# num_epochs = 20\n",
|
522 |
+
"# for epoch in range(num_epochs):\n",
|
523 |
+
"# model.train()\n",
|
524 |
+
"# running_loss = 0.0\n",
|
525 |
+
"# for inputs, targets in loader:\n",
|
526 |
+
"# optimizer.zero_grad() # Reset gradients\n",
|
527 |
+
"# outputs = model(inputs) # Forward Pass\n",
|
528 |
+
"\n",
|
529 |
+
"# # Redhape for Loss Calculation\n",
|
530 |
+
"# targets = targets.view(-1)\n",
|
531 |
+
"# outputs = outputs.view(-1, output_size)\n",
|
532 |
+
"\n",
|
533 |
+
"# loss = criterion(outputs, targets) # Calculate loss\n",
|
534 |
+
"# loss.backward() # Backward Pass\n",
|
535 |
+
"# optimizer.step() # Update weights\n",
|
536 |
+
"\n",
|
537 |
+
"# running_loss += loss.item()\n",
|
538 |
+
" \n",
|
539 |
+
"# print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(loader):.4f}')"
|
540 |
+
]
|
541 |
+
},
|
542 |
+
{
|
543 |
+
"cell_type": "markdown",
|
544 |
+
"metadata": {},
|
545 |
+
"source": [
|
546 |
+
"Evaluating Trained Model"
|
547 |
+
]
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"cell_type": "code",
|
551 |
+
"execution_count": 18,
|
552 |
+
"metadata": {},
|
553 |
+
"outputs": [],
|
554 |
+
"source": [
|
555 |
+
"# model.eval() # set model to evaluation mode\n",
|
556 |
+
"# sample_size = 10\n",
|
557 |
+
"# correct = 0\n",
|
558 |
+
"# total = 0\n",
|
559 |
+
"# with torch.no_grad():\n",
|
560 |
+
"# for i in range(sample_size):\n",
|
561 |
+
"# input_sample = X[i].unsqueeze(0)\n",
|
562 |
+
"# target_sample = y[i]\n",
|
563 |
+
"\n",
|
564 |
+
"# output = model(input_sample)\n",
|
565 |
+
"# _, predicted = torch.max(output.data, 2)\n",
|
566 |
+
"\n",
|
567 |
+
"# total += target_sample.size(0)\n",
|
568 |
+
"# correct += (predicted.squeeze()==target_sample).sum().item()\n",
|
569 |
+
"\n",
|
570 |
+
"# accuracy = 100*correct/total\n",
|
571 |
+
"# print(f'Accuracy on sample of training set: {accuracy:.2f}%')"
|
572 |
+
]
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"cell_type": "markdown",
|
576 |
+
"metadata": {},
|
577 |
+
"source": [
|
578 |
+
"Predicting and Decoding the Predicted Output"
|
579 |
+
]
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"cell_type": "code",
|
583 |
+
"execution_count": 19,
|
584 |
+
"metadata": {},
|
585 |
+
"outputs": [],
|
586 |
+
"source": [
|
587 |
+
"def predict(char_index):\n",
|
588 |
+
" with torch.no_grad():\n",
|
589 |
+
" output = model(torch.tensor([char_index]))\n",
|
590 |
+
" _, prediction = torch.max(output, 2)\n",
|
591 |
+
" return prediction[0]\n",
|
592 |
+
"\n",
|
593 |
+
"def decode(prediction):\n",
|
594 |
+
" # Removing Padding\n",
|
595 |
+
" prediction = [p for p in prediction if p!=2]\n",
|
596 |
+
" decode_symb = ['.' if c == 0 else '-' for c in prediction]\n",
|
597 |
+
" morse_code = ''.join(decode_symb)\n",
|
598 |
+
" return morse_code"
|
599 |
+
]
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"cell_type": "code",
|
603 |
+
"execution_count": 20,
|
604 |
+
"metadata": {},
|
605 |
+
"outputs": [],
|
606 |
+
"source": [
|
607 |
+
"def encode(word):\n",
|
608 |
+
" word = word.upper()\n",
|
609 |
+
" return [lb.transform([c])[0] for c in word]"
|
610 |
+
]
|
611 |
+
},
|
612 |
+
{
|
613 |
+
"cell_type": "markdown",
|
614 |
+
"metadata": {},
|
615 |
+
"source": [
|
616 |
+
"Testing with Some Random Data"
|
617 |
+
]
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"cell_type": "code",
|
621 |
+
"execution_count": 21,
|
622 |
+
"metadata": {},
|
623 |
+
"outputs": [
|
624 |
+
{
|
625 |
+
"data": {
|
626 |
+
"text/plain": [
|
627 |
+
"['.- .--. .--. .-.. . ',\n",
|
628 |
+
" '-... .- .-.. .-.. ',\n",
|
629 |
+
" '-.-. .- - ',\n",
|
630 |
+
" '-..- -- .- ... -....- - .-. . . ']"
|
631 |
+
]
|
632 |
+
},
|
633 |
+
"execution_count": 21,
|
634 |
+
"metadata": {},
|
635 |
+
"output_type": "execute_result"
|
636 |
+
}
|
637 |
+
],
|
638 |
+
"source": [
|
639 |
+
"trancode_list = [\"apple\", \"ball\", \"cat\" ,\"xmas-tree\"]\n",
|
640 |
+
"def get_morse_word(word):\n",
|
641 |
+
" char_indices = encode(word)\n",
|
642 |
+
" decoded = []\n",
|
643 |
+
" for ind in char_indices:\n",
|
644 |
+
" pred = predict(ind)\n",
|
645 |
+
" decoded.append(decode(pred))\n",
|
646 |
+
" decoded.append(' ')\n",
|
647 |
+
" return ''.join(decoded)\n",
|
648 |
+
"codes = [get_morse_word(word) for word in trancode_list]\n",
|
649 |
+
"codes"
|
650 |
+
]
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"cell_type": "markdown",
|
654 |
+
"metadata": {},
|
655 |
+
"source": [
|
656 |
+
"Testing with long Sentences"
|
657 |
+
]
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"cell_type": "code",
|
661 |
+
"execution_count": 22,
|
662 |
+
"metadata": {},
|
663 |
+
"outputs": [
|
664 |
+
{
|
665 |
+
"data": {
|
666 |
+
"text/plain": [
|
667 |
+
"[['Be', 'yourself;', 'everyone', 'else', 'is', 'already', 'taken.'],\n",
|
668 |
+
" ['So', 'many', 'books', 'so', 'little', 'time.'],\n",
|
669 |
+
" ['Two',\n",
|
670 |
+
" 'things',\n",
|
671 |
+
" 'are',\n",
|
672 |
+
" 'infinite:',\n",
|
673 |
+
" 'the',\n",
|
674 |
+
" 'universe',\n",
|
675 |
+
" 'and',\n",
|
676 |
+
" 'human',\n",
|
677 |
+
" 'stupidity;',\n",
|
678 |
+
" 'and',\n",
|
679 |
+
" \"I'm\",\n",
|
680 |
+
" 'not',\n",
|
681 |
+
" 'sure',\n",
|
682 |
+
" 'about',\n",
|
683 |
+
" 'the',\n",
|
684 |
+
" 'universe.']]"
|
685 |
+
]
|
686 |
+
},
|
687 |
+
"execution_count": 22,
|
688 |
+
"metadata": {},
|
689 |
+
"output_type": "execute_result"
|
690 |
+
}
|
691 |
+
],
|
692 |
+
"source": [
|
693 |
+
"trancode_sentences = [\"Be yourself; everyone else is already taken.\", \"So many books so little time.\", \"Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.\" ]\n",
|
694 |
+
"trancode_lists = [ sen.split(' ') for sen in trancode_sentences ]\n",
|
695 |
+
"trancode_lists"
|
696 |
+
]
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"cell_type": "code",
|
700 |
+
"execution_count": 23,
|
701 |
+
"metadata": {},
|
702 |
+
"outputs": [
|
703 |
+
{
|
704 |
+
"data": {
|
705 |
+
"text/plain": [
|
706 |
+
"['-... . -.-- --- ..- .-. ... . .-.. ..-. -.-.-. . ...- . .-. -.-- --- -. . . .-.. ... . .. ... .- .-.. .-. . .- -.. -.-- - .- -.- . -. .-.-.- ',\n",
|
707 |
+
" '... --- -- .- -. -.-- -... --- --- -.- ... ... --- .-.. .. - - .-.. . - .. -- . .-.-.- ',\n",
|
708 |
+
" '- .-- --- - .... .. -. --. ... .- .-. . .. -. ..-. .. -. .. - . ---... - .... . ..- -. .. ...- . .-. ... . .- -. -.. .... ..- -- .- -. ... - ..- .--. .. -.. .. - -.-- -.-.-. .- -. -.. .. .----. -- -. --- - ... ..- .-. . .- -... --- ..- - - .... . ..- -. .. ...- . .-. ... . .-.-.- ']"
|
709 |
+
]
|
710 |
+
},
|
711 |
+
"execution_count": 23,
|
712 |
+
"metadata": {},
|
713 |
+
"output_type": "execute_result"
|
714 |
+
}
|
715 |
+
],
|
716 |
+
"source": [
|
717 |
+
"get_morse_codes = []\n",
|
718 |
+
"for l1 in trancode_lists:\n",
|
719 |
+
" codes = [get_morse_word(word)+' ' for word in l1]\n",
|
720 |
+
" get_morse_codes.append(''.join(codes))\n",
|
721 |
+
"get_morse_codes"
|
722 |
+
]
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"cell_type": "markdown",
|
726 |
+
"metadata": {},
|
727 |
+
"source": [
|
728 |
+
"### INFERENCE API"
|
729 |
+
]
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"cell_type": "code",
|
733 |
+
"execution_count": 24,
|
734 |
+
"metadata": {},
|
735 |
+
"outputs": [
|
736 |
+
{
|
737 |
+
"name": "stdout",
|
738 |
+
"output_type": "stream",
|
739 |
+
"text": [
|
740 |
+
"- . -- .--. . .-. .- - ..- .-. . "
|
741 |
+
]
|
742 |
+
}
|
743 |
+
],
|
744 |
+
"source": [
|
745 |
+
"import time\n",
|
746 |
+
"take_input = input(\"Type your message: \")\n",
|
747 |
+
"response = [get_morse_word(word)+' ' for word in take_input.split()]\n",
|
748 |
+
"response = ''.join(response)\n",
|
749 |
+
"for i in response:\n",
|
750 |
+
" print(i, end=\"\")\n",
|
751 |
+
" # time.sleep(100*pow(10, -3)) FUN"
|
752 |
+
]
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"cell_type": "code",
|
756 |
+
"execution_count": 25,
|
757 |
+
"metadata": {},
|
758 |
+
"outputs": [],
|
759 |
+
"source": [
|
760 |
+
"# Save the model's weights\n",
|
761 |
+
"torch.save(model.state_dict(), 'morse_model_weights.pth')\n",
|
762 |
+
"\n",
|
763 |
+
"# Load the weights into a new model\n",
|
764 |
+
"model.load_state_dict(torch.load('morse_model_weights.pth', weights_only=True))\n",
|
765 |
+
"\n",
|
766 |
+
"# Set the model to evaluation mode\n",
|
767 |
+
"model.eval()\n",
|
768 |
+
"# Save the entire model\n",
|
769 |
+
"torch.save(model, 'complete_model.pth')"
|
770 |
+
]
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"cell_type": "code",
|
774 |
+
"execution_count": 26,
|
775 |
+
"metadata": {},
|
776 |
+
"outputs": [
|
777 |
+
{
|
778 |
+
"data": {
|
779 |
+
"text/plain": [
|
780 |
+
"MorseH_Model(\n",
|
781 |
+
" (emmbedding): Embedding(54, 16)\n",
|
782 |
+
" (fc1): Linear(in_features=16, out_features=32, bias=True)\n",
|
783 |
+
" (fc2): Linear(in_features=32, out_features=24, bias=True)\n",
|
784 |
+
")"
|
785 |
+
]
|
786 |
+
},
|
787 |
+
"execution_count": 26,
|
788 |
+
"metadata": {},
|
789 |
+
"output_type": "execute_result"
|
790 |
+
}
|
791 |
+
],
|
792 |
+
"source": [
|
793 |
+
"model"
|
794 |
+
]
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"cell_type": "code",
|
798 |
+
"execution_count": 27,
|
799 |
+
"metadata": {},
|
800 |
+
"outputs": [],
|
801 |
+
"source": [
|
802 |
+
"# Save the model weights as pytorch_model.bin\n",
|
803 |
+
"import torch\n",
|
804 |
+
"torch.save(model.state_dict(), \"pytorch_model.bin\")"
|
805 |
+
]
|
806 |
+
},
|
807 |
+
{
|
808 |
+
"cell_type": "markdown",
|
809 |
+
"metadata": {},
|
810 |
+
"source": [
|
811 |
+
"To Use it later"
|
812 |
+
]
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"cell_type": "code",
|
816 |
+
"execution_count": 28,
|
817 |
+
"metadata": {},
|
818 |
+
"outputs": [],
|
819 |
+
"source": [
|
820 |
+
"# # Instantiate the model (ensure it has the same architecture)\n",
|
821 |
+
"# model = MorseH_Model(input_size=input_size, output_size=output_size, max_length=max_len)\n",
|
822 |
+
"\n",
|
823 |
+
"# # Load the saved weights\n",
|
824 |
+
"# model.load_state_dict(torch.load(\"pytorch_model.bin\"))\n",
|
825 |
+
"\n",
|
826 |
+
"# # Set the model to evaluation mode if needed\n",
|
827 |
+
"# model.eval()"
|
828 |
+
]
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"cell_type": "code",
|
832 |
+
"execution_count": null,
|
833 |
+
"metadata": {},
|
834 |
+
"outputs": [],
|
835 |
+
"source": []
|
836 |
+
}
|
837 |
+
],
|
838 |
+
"metadata": {
|
839 |
+
"kernelspec": {
|
840 |
+
"display_name": "Python 3",
|
841 |
+
"language": "python",
|
842 |
+
"name": "python3"
|
843 |
+
},
|
844 |
+
"language_info": {
|
845 |
+
"codemirror_mode": {
|
846 |
+
"name": "ipython",
|
847 |
+
"version": 3
|
848 |
+
},
|
849 |
+
"file_extension": ".py",
|
850 |
+
"mimetype": "text/x-python",
|
851 |
+
"name": "python",
|
852 |
+
"nbconvert_exporter": "python",
|
853 |
+
"pygments_lexer": "ipython3",
|
854 |
+
"version": "3.12.2"
|
855 |
+
}
|
856 |
+
},
|
857 |
+
"nbformat": 4,
|
858 |
+
"nbformat_minor": 2
|
859 |
+
}
|
morse_data.csv
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Character,Morse Code
|
2 |
+
A,.-
|
3 |
+
B,-...
|
4 |
+
C,-.-.
|
5 |
+
D,-..
|
6 |
+
E,.
|
7 |
+
F,..-.
|
8 |
+
G,--.
|
9 |
+
H,....
|
10 |
+
I,..
|
11 |
+
J,.---
|
12 |
+
K,-.-
|
13 |
+
L,.-..
|
14 |
+
M,--
|
15 |
+
N,-.
|
16 |
+
O,---
|
17 |
+
P,.--.
|
18 |
+
Q,--.-
|
19 |
+
R,.-.
|
20 |
+
S,...
|
21 |
+
T,-
|
22 |
+
U,..-
|
23 |
+
V,...-
|
24 |
+
W,.--
|
25 |
+
X,-..-
|
26 |
+
Y,-.--
|
27 |
+
Z,--..
|
28 |
+
0,-----
|
29 |
+
1,.----
|
30 |
+
2,..---
|
31 |
+
3,...--
|
32 |
+
4,....-
|
33 |
+
5,.....
|
34 |
+
6,-....
|
35 |
+
7,--...
|
36 |
+
8,---..
|
37 |
+
9,----.
|
38 |
+
.,.-.-.-
|
39 |
+
c,--..--
|
40 |
+
?,..--..
|
41 |
+
’,.----.
|
42 |
+
!,-.-.--
|
43 |
+
/,-..-.
|
44 |
+
(,-.--.
|
45 |
+
),-.--.-
|
46 |
+
&,.-...
|
47 |
+
:,---...
|
48 |
+
;,-.-.-.
|
49 |
+
=,-...-
|
50 |
+
+,.-.-.
|
51 |
+
-,-....-
|
52 |
+
_,..--.-
|
53 |
+
$,...-..-.
|
54 |
+
,
|
55 |
+
',.----.
|
morse_model_weights.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fda920b27896795388d1c5479204c8ca14828741ad13073714812c3decad9355
|
3 |
+
size 11256
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a6b27780d2d6187d91f3080b9ed45e9ecab93c1862241a76bb46d7d6688140f
|
3 |
+
size 11202
|