End of training
Browse files- README.md +95 -196
- config.json +80 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,199 +1,98 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
##
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/mit-b5
|
4 |
+
tags:
|
5 |
+
- vision
|
6 |
+
- image-segmentation
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: SegFormer_mit-b5_Clean-Set3-Grayscale_Augmented_Hard
|
10 |
+
results: []
|
11 |
---
|
12 |
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# SegFormer_mit-b5_Clean-Set3-Grayscale_Augmented_Hard
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the Hasano20/Clean-Set3-Grayscale dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.0143
|
21 |
+
- Mean Iou: 0.9789
|
22 |
+
- Mean Accuracy: 0.9908
|
23 |
+
- Overall Accuracy: 0.9945
|
24 |
+
- Accuracy Background: 0.9964
|
25 |
+
- Accuracy Melt: 0.9810
|
26 |
+
- Accuracy Substrate: 0.9951
|
27 |
+
- Iou Background: 0.9930
|
28 |
+
- Iou Melt: 0.9518
|
29 |
+
- Iou Substrate: 0.9919
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 0.0002
|
49 |
+
- train_batch_size: 8
|
50 |
+
- eval_batch_size: 8
|
51 |
+
- seed: 42
|
52 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
+
- lr_scheduler_type: cosine
|
54 |
+
- lr_scheduler_warmup_steps: 100
|
55 |
+
- num_epochs: 25
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Melt | Accuracy Substrate | Iou Background | Iou Melt | Iou Substrate |
|
60 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:------------------:|:--------------:|:--------:|:-------------:|
|
61 |
+
| 0.3678 | 0.3030 | 50 | 0.1206 | 0.8584 | 0.9180 | 0.9591 | 0.9811 | 0.8082 | 0.9648 | 0.9560 | 0.6832 | 0.9361 |
|
62 |
+
| 0.1315 | 0.6061 | 100 | 0.0573 | 0.9293 | 0.9609 | 0.9808 | 0.9953 | 0.9068 | 0.9805 | 0.9764 | 0.8404 | 0.9710 |
|
63 |
+
| 0.0983 | 0.9091 | 150 | 0.0426 | 0.9427 | 0.9712 | 0.9855 | 0.9927 | 0.9330 | 0.9879 | 0.9865 | 0.8645 | 0.9772 |
|
64 |
+
| 0.0302 | 1.2121 | 200 | 0.0397 | 0.9420 | 0.9562 | 0.9860 | 0.9937 | 0.8783 | 0.9965 | 0.9870 | 0.8609 | 0.9781 |
|
65 |
+
| 0.0378 | 1.5152 | 250 | 0.0366 | 0.9447 | 0.9804 | 0.9856 | 0.9916 | 0.9655 | 0.9840 | 0.9872 | 0.8704 | 0.9765 |
|
66 |
+
| 0.232 | 1.8182 | 300 | 0.0278 | 0.9582 | 0.9810 | 0.9893 | 0.9894 | 0.9599 | 0.9938 | 0.9875 | 0.9026 | 0.9844 |
|
67 |
+
| 0.023 | 2.1212 | 350 | 0.0252 | 0.9630 | 0.9821 | 0.9905 | 0.9958 | 0.9595 | 0.9910 | 0.9895 | 0.9141 | 0.9852 |
|
68 |
+
| 0.0254 | 2.4242 | 400 | 0.0263 | 0.9626 | 0.9841 | 0.9901 | 0.9964 | 0.9675 | 0.9885 | 0.9887 | 0.9146 | 0.9846 |
|
69 |
+
| 0.0153 | 2.7273 | 450 | 0.0299 | 0.9613 | 0.9735 | 0.9906 | 0.9952 | 0.9290 | 0.9963 | 0.9904 | 0.9080 | 0.9855 |
|
70 |
+
| 0.0172 | 3.0303 | 500 | 0.0230 | 0.9645 | 0.9776 | 0.9913 | 0.9956 | 0.9417 | 0.9956 | 0.9917 | 0.9153 | 0.9864 |
|
71 |
+
| 0.0338 | 3.3333 | 550 | 0.0185 | 0.9723 | 0.9875 | 0.9928 | 0.9972 | 0.9733 | 0.9922 | 0.9913 | 0.9368 | 0.9889 |
|
72 |
+
| 0.0168 | 3.6364 | 600 | 0.0231 | 0.9679 | 0.9788 | 0.9922 | 0.9969 | 0.9438 | 0.9958 | 0.9921 | 0.9237 | 0.9878 |
|
73 |
+
| 0.0253 | 3.9394 | 650 | 0.0245 | 0.9664 | 0.9772 | 0.9918 | 0.9965 | 0.9388 | 0.9962 | 0.9920 | 0.9202 | 0.9869 |
|
74 |
+
| 0.0163 | 4.2424 | 700 | 0.0191 | 0.9689 | 0.9832 | 0.9923 | 0.9961 | 0.9592 | 0.9943 | 0.9917 | 0.9270 | 0.9881 |
|
75 |
+
| 0.0133 | 4.5455 | 750 | 0.0173 | 0.9745 | 0.9877 | 0.9932 | 0.9976 | 0.9728 | 0.9928 | 0.9913 | 0.9428 | 0.9895 |
|
76 |
+
| 0.0133 | 4.8485 | 800 | 0.0171 | 0.9742 | 0.9876 | 0.9934 | 0.9965 | 0.9721 | 0.9942 | 0.9921 | 0.9405 | 0.9901 |
|
77 |
+
| 0.0362 | 5.1515 | 850 | 0.0178 | 0.9725 | 0.9866 | 0.9931 | 0.9973 | 0.9692 | 0.9934 | 0.9918 | 0.9360 | 0.9897 |
|
78 |
+
| 0.0142 | 5.4545 | 900 | 0.0208 | 0.9679 | 0.9888 | 0.9919 | 0.9961 | 0.9797 | 0.9904 | 0.9919 | 0.9244 | 0.9874 |
|
79 |
+
| 0.0111 | 5.7576 | 950 | 0.0149 | 0.9772 | 0.9882 | 0.9941 | 0.9964 | 0.9727 | 0.9956 | 0.9924 | 0.9478 | 0.9915 |
|
80 |
+
| 0.0184 | 6.0606 | 1000 | 0.0165 | 0.9737 | 0.9822 | 0.9934 | 0.9977 | 0.9525 | 0.9963 | 0.9915 | 0.9388 | 0.9909 |
|
81 |
+
| 0.0181 | 6.3636 | 1050 | 0.0157 | 0.9759 | 0.9853 | 0.9938 | 0.9973 | 0.9628 | 0.9959 | 0.9924 | 0.9443 | 0.9909 |
|
82 |
+
| 0.0138 | 6.6667 | 1100 | 0.0143 | 0.9781 | 0.9907 | 0.9943 | 0.9966 | 0.9811 | 0.9945 | 0.9926 | 0.9501 | 0.9917 |
|
83 |
+
| 0.0287 | 6.9697 | 1150 | 0.0161 | 0.9747 | 0.9875 | 0.9934 | 0.9976 | 0.9714 | 0.9935 | 0.9920 | 0.9420 | 0.9900 |
|
84 |
+
| 0.0144 | 7.2727 | 1200 | 0.0149 | 0.9774 | 0.9894 | 0.9940 | 0.9974 | 0.9771 | 0.9938 | 0.9920 | 0.9493 | 0.9909 |
|
85 |
+
| 0.012 | 7.5758 | 1250 | 0.0139 | 0.9783 | 0.9906 | 0.9943 | 0.9971 | 0.9805 | 0.9942 | 0.9929 | 0.9506 | 0.9915 |
|
86 |
+
| 0.0098 | 7.8788 | 1300 | 0.0134 | 0.9793 | 0.9901 | 0.9945 | 0.9976 | 0.9782 | 0.9945 | 0.9927 | 0.9533 | 0.9918 |
|
87 |
+
| 0.0105 | 8.1818 | 1350 | 0.0182 | 0.9780 | 0.9895 | 0.9942 | 0.9971 | 0.9768 | 0.9946 | 0.9926 | 0.9500 | 0.9913 |
|
88 |
+
| 0.014 | 8.4848 | 1400 | 0.0141 | 0.9784 | 0.9896 | 0.9943 | 0.9969 | 0.9769 | 0.9948 | 0.9924 | 0.9512 | 0.9916 |
|
89 |
+
| 0.0117 | 8.7879 | 1450 | 0.0154 | 0.9767 | 0.9911 | 0.9938 | 0.9968 | 0.9834 | 0.9930 | 0.9917 | 0.9477 | 0.9908 |
|
90 |
+
| 0.0153 | 9.0909 | 1500 | 0.0143 | 0.9789 | 0.9908 | 0.9945 | 0.9964 | 0.9810 | 0.9951 | 0.9930 | 0.9518 | 0.9919 |
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.41.2
|
96 |
+
- Pytorch 2.0.1+cu117
|
97 |
+
- Datasets 2.19.2
|
98 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/mit-b5",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 768,
|
9 |
+
"depths": [
|
10 |
+
3,
|
11 |
+
6,
|
12 |
+
40,
|
13 |
+
3
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
64,
|
26 |
+
128,
|
27 |
+
320,
|
28 |
+
512
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "background",
|
32 |
+
"1": "melt",
|
33 |
+
"2": "substrate"
|
34 |
+
},
|
35 |
+
"image_size": 224,
|
36 |
+
"initializer_range": 0.02,
|
37 |
+
"label2id": {
|
38 |
+
"background": 0,
|
39 |
+
"melt": 1,
|
40 |
+
"substrate": 2
|
41 |
+
},
|
42 |
+
"layer_norm_eps": 1e-06,
|
43 |
+
"mlp_ratios": [
|
44 |
+
4,
|
45 |
+
4,
|
46 |
+
4,
|
47 |
+
4
|
48 |
+
],
|
49 |
+
"model_type": "segformer",
|
50 |
+
"num_attention_heads": [
|
51 |
+
1,
|
52 |
+
2,
|
53 |
+
5,
|
54 |
+
8
|
55 |
+
],
|
56 |
+
"num_channels": 3,
|
57 |
+
"num_encoder_blocks": 4,
|
58 |
+
"patch_sizes": [
|
59 |
+
7,
|
60 |
+
3,
|
61 |
+
3,
|
62 |
+
3
|
63 |
+
],
|
64 |
+
"reshape_last_stage": true,
|
65 |
+
"semantic_loss_ignore_index": 255,
|
66 |
+
"sr_ratios": [
|
67 |
+
8,
|
68 |
+
4,
|
69 |
+
2,
|
70 |
+
1
|
71 |
+
],
|
72 |
+
"strides": [
|
73 |
+
4,
|
74 |
+
2,
|
75 |
+
2,
|
76 |
+
2
|
77 |
+
],
|
78 |
+
"torch_dtype": "float32",
|
79 |
+
"transformers_version": "4.41.2"
|
80 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fdce731d19ace10a3fbdf14198cf3bad881107c9f96e7742170d81dd9edf011
|
3 |
+
size 338531516
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84251a847c7b2bab280e3d0bc921e35576ae2bde74dd4d3d2e5fb28a2a1ec7c3
|
3 |
+
size 4987
|