diff --git "a/Untitled1.ipynb" "b/Untitled1.ipynb"
new file mode 100644--- /dev/null
+++ "b/Untitled1.ipynb"
@@ -0,0 +1,5303 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "executionInfo": {
+ "elapsed": 23644,
+ "status": "ok",
+ "timestamp": 1669576254858,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "1jUAOZGjfYt8",
+ "outputId": "11f8fd4f-1229-4ce4-96cf-6662f2c706b1"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Defaulting to user installation because normal site-packages is not writeable\n",
+ "Requirement already satisfied: datasets in /home/user/.local/lib/python3.10/site-packages (2.6.1)\n",
+ "Requirement already satisfied: transformers in /home/user/.local/lib/python3.10/site-packages (4.20.0)\n",
+ "Requirement already satisfied: rouge-score in /home/user/.local/lib/python3.10/site-packages (0.1.2)\n",
+ "Requirement already satisfied: nltk in /home/user/.local/lib/python3.10/site-packages (3.7)\n",
+ "Requirement already satisfied: requests>=2.19.0 in /usr/lib/python3/dist-packages (from datasets) (2.25.1)\n",
+ "Requirement already satisfied: pyyaml>=5.1 in /usr/lib/python3/dist-packages (from datasets) (5.4.1)\n",
+ "Requirement already satisfied: dill<0.3.6 in /home/user/.local/lib/python3.10/site-packages (from datasets) (0.3.5.1)\n",
+ "Requirement already satisfied: numpy>=1.17 in /home/user/.local/lib/python3.10/site-packages (from datasets) (1.23.3)\n",
+ "Requirement already satisfied: xxhash in /home/user/.local/lib/python3.10/site-packages (from datasets) (3.1.0)\n",
+ "Requirement already satisfied: pandas in /home/user/.local/lib/python3.10/site-packages (from datasets) (1.5.0)\n",
+ "Requirement already satisfied: aiohttp in /home/user/.local/lib/python3.10/site-packages (from datasets) (3.8.3)\n",
+ "Requirement already satisfied: responses<0.19 in /home/user/.local/lib/python3.10/site-packages (from datasets) (0.18.0)\n",
+ "Requirement already satisfied: pyarrow>=6.0.0 in /home/user/.local/lib/python3.10/site-packages (from datasets) (10.0.0)\n",
+ "Requirement already satisfied: multiprocess in /home/user/.local/lib/python3.10/site-packages (from datasets) (0.70.13)\n",
+ "Requirement already satisfied: fsspec[http]>=2021.11.1 in /home/user/.local/lib/python3.10/site-packages (from datasets) (2022.10.0)\n",
+ "Requirement already satisfied: packaging in /home/user/.local/lib/python3.10/site-packages (from datasets) (21.3)\n",
+ "Requirement already satisfied: tqdm>=4.62.1 in /home/user/.local/lib/python3.10/site-packages (from datasets) (4.64.1)\n",
+ "Requirement already satisfied: huggingface-hub<1.0.0,>=0.2.0 in /home/user/.local/lib/python3.10/site-packages (from datasets) (0.10.1)\n",
+ "Requirement already satisfied: tokenizers!=0.11.3,<0.13,>=0.11.1 in /home/user/.local/lib/python3.10/site-packages (from transformers) (0.12.1)\n",
+ "Requirement already satisfied: filelock in /usr/lib/python3/dist-packages (from transformers) (3.6.0)\n",
+ "Requirement already satisfied: regex!=2019.12.17 in /home/user/.local/lib/python3.10/site-packages (from transformers) (2022.9.13)\n",
+ "Requirement already satisfied: six>=1.14.0 in /usr/lib/python3/dist-packages (from rouge-score) (1.16.0)\n",
+ "Requirement already satisfied: absl-py in /home/user/.local/lib/python3.10/site-packages (from rouge-score) (1.2.0)\n",
+ "Requirement already satisfied: joblib in /home/user/.local/lib/python3.10/site-packages (from nltk) (1.2.0)\n",
+ "Requirement already satisfied: click in /usr/lib/python3/dist-packages (from nltk) (8.0.3)\n",
+ "Requirement already satisfied: multidict<7.0,>=4.5 in /home/user/.local/lib/python3.10/site-packages (from aiohttp->datasets) (6.0.2)\n",
+ "Requirement already satisfied: aiosignal>=1.1.2 in /home/user/.local/lib/python3.10/site-packages (from aiohttp->datasets) (1.2.0)\n",
+ "Requirement already satisfied: charset-normalizer<3.0,>=2.0 in /home/user/.local/lib/python3.10/site-packages (from aiohttp->datasets) (2.1.1)\n",
+ "Requirement already satisfied: frozenlist>=1.1.1 in /home/user/.local/lib/python3.10/site-packages (from aiohttp->datasets) (1.3.1)\n",
+ "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /home/user/.local/lib/python3.10/site-packages (from aiohttp->datasets) (4.0.2)\n",
+ "Requirement already satisfied: attrs>=17.3.0 in /home/user/.local/lib/python3.10/site-packages (from aiohttp->datasets) (22.1.0)\n",
+ "Requirement already satisfied: yarl<2.0,>=1.0 in /home/user/.local/lib/python3.10/site-packages (from aiohttp->datasets) (1.8.1)\n",
+ "Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/user/.local/lib/python3.10/site-packages (from huggingface-hub<1.0.0,>=0.2.0->datasets) (4.4.0)\n",
+ "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/lib/python3/dist-packages (from packaging->datasets) (2.4.7)\n",
+ "Requirement already satisfied: urllib3>=1.25.10 in /usr/lib/python3/dist-packages (from responses<0.19->datasets) (1.26.5)\n",
+ "Requirement already satisfied: python-dateutil>=2.8.1 in /home/user/.local/lib/python3.10/site-packages (from pandas->datasets) (2.8.2)\n",
+ "Requirement already satisfied: pytz>=2020.1 in /usr/lib/python3/dist-packages (from pandas->datasets) (2022.1)\n",
+ "Requirement already satisfied: idna>=2.0 in /usr/lib/python3/dist-packages (from yarl<2.0,>=1.0->aiohttp->datasets) (3.3)\n"
+ ]
+ }
+ ],
+ "source": [
+ "! pip install datasets transformers rouge-score nltk"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 331,
+ "referenced_widgets": [
+ "c38b3a29bdb24edf9f9ffc2a1d7ea136",
+ "bd4317d0cace4fa8a9d4e6f55643457f",
+ "1458810480da42cc81793be5af19d9fd",
+ "8a1d2e60bee942129dad6a705ed03aa5",
+ "a6f0d0297c6347c9a271bf33c27d3e8e",
+ "80ed1d76abc34b0a9d95d937eae6b626",
+ "3b9d888697984453978d8b82e167a7cd",
+ "5468607c66ac4a5d893b66de7803a1da",
+ "ec07fb7fa6754fe3ad81d7e8a128fac3",
+ "bd84f71efa3942b69c337203376d6f9d",
+ "50339a3619674663958b9cacc42224b0",
+ "8916adf78ef54b1b80e04a3a4f9bdf8c",
+ "a6bd07e3118f42e79e1b3d7675dd28e3",
+ "14946c0a0b124448aec12ab62adecee9",
+ "c7630aea76ff4160a20578c22f8e97e8",
+ "75149305e7614e0b84cbebb12fc7340b",
+ "f3fd3ead9fb44d0d9616d89b1992c7ba"
+ ]
+ },
+ "executionInfo": {
+ "elapsed": 333,
+ "status": "ok",
+ "timestamp": 1669576266320,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "6IuXlV3Ffanz",
+ "outputId": "bb952e77-9ef9-482e-c532-502b9b20462c"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Login successful\n",
+ "Your token has been saved to /home/user/.huggingface/token\n",
+ "\u001b[1m\u001b[31mAuthenticated through git-credential store but this isn't the helper defined on your machine.\n",
+ "You might have to re-authenticate when pushing to the Hugging Face Hub. Run the following command in your terminal in case you want to set this credential helper as the default\n",
+ "\n",
+ "git config --global credential.helper store\u001b[0m\n"
+ ]
+ }
+ ],
+ "source": [
+ "from huggingface_hub import notebook_login\n",
+ "\n",
+ "notebook_login()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!git config --global credential.helper store\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "executionInfo": {
+ "elapsed": 1875,
+ "status": "ok",
+ "timestamp": 1669576287294,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "zA3LmEG9fu80",
+ "outputId": "f9583b3c-db03-41e0-b153-b912a0020595"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\u001b[1;31mE: \u001b[0mCould not open lock file /var/lib/dpkg/lock-frontend - open (13: Permission denied)\u001b[0m\r\n",
+ "\u001b[1;31mE: \u001b[0mUnable to acquire the dpkg frontend lock (/var/lib/dpkg/lock-frontend), are you root?\u001b[0m\r\n"
+ ]
+ }
+ ],
+ "source": [
+ "!apt install git-lfs"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "executionInfo": {
+ "elapsed": 2483,
+ "status": "ok",
+ "timestamp": 1669576292029,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "50K-4gBfgGRh",
+ "outputId": "cf0ee968-30ef-44cc-e00c-1401fd6efe09"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "4.20.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "import transformers\n",
+ "\n",
+ "print(transformers.__version__)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "executionInfo": {
+ "elapsed": 358,
+ "status": "ok",
+ "timestamp": 1669576294061,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "ymFBPi-XgJ0_"
+ },
+ "outputs": [],
+ "source": [
+ "model_checkpoint = 'facebook/bart-large-cnn'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 712,
+ "referenced_widgets": [
+ "d2e8b31a5ff34826a0a9add966b3a612",
+ "522be447cd3a49e5abc09c438405dd2c",
+ "179dd0a736aa470a993585febe5c1462",
+ "4e3e2875eb2b47abbdfd0994a1a1ab77",
+ "56ac28edb6ca4415ba964f42d4d27bed",
+ "83d334d4b71e4c07a1fc3dac8115f948",
+ "c1aa4ce82ce44a6fbe342d6f9d27ace3",
+ "6ff11cd026154544bee3ea10ceff2c2d",
+ "3aef5fca9d01411dbf02c42bb9edd293",
+ "fa597dbb89aa4f5fac6cc6e0a9859d59",
+ "867595abfc9c4dd28a19346afb584534"
+ ]
+ },
+ "executionInfo": {
+ "elapsed": 2879,
+ "status": "ok",
+ "timestamp": 1669576300418,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "57B0I_4zguys",
+ "outputId": "0945df5a-9aee-4441-b006-55d10db99374"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/tmp/ipykernel_47026/939338506.py:3: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate\n",
+ " load_metric('rouge')\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "c802d13e0abb4a44a77e3cb10af6651e",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading builder script: 0%| | 0.00/2.16k [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "Metric(name: \"rouge\", features: {'predictions': Value(dtype='string', id='sequence'), 'references': Value(dtype='string', id='sequence')}, usage: \"\"\"\n",
+ "Calculates average rouge scores for a list of hypotheses and references\n",
+ "Args:\n",
+ " predictions: list of predictions to score. Each prediction\n",
+ " should be a string with tokens separated by spaces.\n",
+ " references: list of reference for each prediction. Each\n",
+ " reference should be a string with tokens separated by spaces.\n",
+ " rouge_types: A list of rouge types to calculate.\n",
+ " Valid names:\n",
+ " `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n",
+ " `\"rougeL\"`: Longest common subsequence based scoring.\n",
+ " `\"rougeLSum\"`: rougeLsum splits text using `\"\n",
+ "\"`.\n",
+ " See details in https://github.com/huggingface/datasets/issues/617\n",
+ " use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n",
+ " use_aggregator: Return aggregates if this is set to True\n",
+ "Returns:\n",
+ " rouge1: rouge_1 (precision, recall, f1),\n",
+ " rouge2: rouge_2 (precision, recall, f1),\n",
+ " rougeL: rouge_l (precision, recall, f1),\n",
+ " rougeLsum: rouge_lsum (precision, recall, f1)\n",
+ "Examples:\n",
+ "\n",
+ " >>> rouge = datasets.load_metric('rouge')\n",
+ " >>> predictions = [\"hello there\", \"general kenobi\"]\n",
+ " >>> references = [\"hello there\", \"general kenobi\"]\n",
+ " >>> results = rouge.compute(predictions=predictions, references=references)\n",
+ " >>> print(list(results.keys()))\n",
+ " ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n",
+ " >>> print(results[\"rouge1\"])\n",
+ " AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n",
+ " >>> print(results[\"rouge1\"].mid.fmeasure)\n",
+ " 1.0\n",
+ "\"\"\", stored examples: 0)"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from datasets import load_dataset, load_metric\n",
+ "\n",
+ "load_metric('rouge')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "executionInfo": {
+ "elapsed": 912,
+ "status": "ok",
+ "timestamp": 1669576305170,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "ycjFViueiC1x",
+ "outputId": "d982e6dd-79ee-4ffb-abe7-89002fd2d7bc"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "[nltk_data] Downloading package punkt to /home/user/nltk_data...\n",
+ "[nltk_data] Package punkt is already up-to-date!\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "True"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import nltk\n",
+ "nltk.download('punkt')\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "executionInfo": {
+ "elapsed": 354,
+ "status": "ok",
+ "timestamp": 1669576330301,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "YHBxeIxlhJ-t"
+ },
+ "outputs": [],
+ "source": [
+ "result = pd.read_csv('results.csv')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "executionInfo": {
+ "elapsed": 303,
+ "status": "ok",
+ "timestamp": 1669576335012,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "Gq6dBpcsiAKS"
+ },
+ "outputs": [],
+ "source": [
+ "red_panel = pd.read_csv('red_panel.csv')\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 424
+ },
+ "executionInfo": {
+ "elapsed": 323,
+ "status": "ok",
+ "timestamp": 1669576337691,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "NaXyZezfi8jZ",
+ "outputId": "fd7cec48-c512-45b7-f9d1-4f5face4e677"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " red_panel_text_box_body | \n",
+ " Unnamed: 1 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " The numerical model, was able to predict a rea... | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " Lines with recessive ppd-H1 presented delayed ... | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " Tumor- but not macrophage-derived PGRN is asso... | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " A total of 449 BCs were analyzed.Sensitivities... | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " Factors for non-adherent behavior were examine... | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 90 | \n",
+ " Results: The mean age of participants was 50 y... | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 91 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 92 | \n",
+ " Subjects with reduced left ventricular systoli... | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 93 | \n",
+ " Results A total of 47 722 new cases were repor... | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 94 | \n",
+ " In isolated hearts, CPT showed a biphasic effe... | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
95 rows × 2 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " red_panel_text_box_body Unnamed: 1\n",
+ "0 The numerical model, was able to predict a rea... NaN\n",
+ "1 Lines with recessive ppd-H1 presented delayed ... NaN\n",
+ "2 Tumor- but not macrophage-derived PGRN is asso... NaN\n",
+ "3 A total of 449 BCs were analyzed.Sensitivities... NaN\n",
+ "4 Factors for non-adherent behavior were examine... NaN\n",
+ ".. ... ...\n",
+ "90 Results: The mean age of participants was 50 y... NaN\n",
+ "91 NaN NaN\n",
+ "92 Subjects with reduced left ventricular systoli... NaN\n",
+ "93 Results A total of 47 722 new cases were repor... NaN\n",
+ "94 In isolated hearts, CPT showed a biphasic effe... NaN\n",
+ "\n",
+ "[95 rows x 2 columns]"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "result"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 424
+ },
+ "executionInfo": {
+ "elapsed": 422,
+ "status": "ok",
+ "timestamp": 1669576343162,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "5sIYZmxljbdD",
+ "outputId": "7f44fed4-8329-4341-87a5-b34ddedb62cb"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " red_panel_text_box_body | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " For metaphyseal fracture healing in the distal... | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " For breeding of high-yielding cultivars with s... | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " In pancreatic ductal adenocarcinoma: We show a... | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " For the detection of frequent Gram-negatives d... | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " Patients with cluster headache: Tended to hav... | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 90 | \n",
+ " After bariatric surgery: Reduced anti-apoA-1 I... | \n",
+ "
\n",
+ " \n",
+ " 91 | \n",
+ " For children/young adults with diabetes and di... | \n",
+ "
\n",
+ " \n",
+ " 92 | \n",
+ " In dilated cardiomyopathy: Advanced flow imagi... | \n",
+ "
\n",
+ " \n",
+ " 93 | \n",
+ " For COVID-19: Approximately 85% of the Chinese... | \n",
+ "
\n",
+ " \n",
+ " 94 | \n",
+ " In the heart: CPT may affect contraction and a... | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
95 rows × 1 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " red_panel_text_box_body\n",
+ "0 For metaphyseal fracture healing in the distal...\n",
+ "1 For breeding of high-yielding cultivars with s...\n",
+ "2 In pancreatic ductal adenocarcinoma: We show a...\n",
+ "3 For the detection of frequent Gram-negatives d...\n",
+ "4 Patients with cluster headache: Tended to hav...\n",
+ ".. ...\n",
+ "90 After bariatric surgery: Reduced anti-apoA-1 I...\n",
+ "91 For children/young adults with diabetes and di...\n",
+ "92 In dilated cardiomyopathy: Advanced flow imagi...\n",
+ "93 For COVID-19: Approximately 85% of the Chinese...\n",
+ "94 In the heart: CPT may affect contraction and a...\n",
+ "\n",
+ "[95 rows x 1 columns]"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "red_panel"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "executionInfo": {
+ "elapsed": 414,
+ "status": "ok",
+ "timestamp": 1669576345836,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "Wlchlv9ejd_J"
+ },
+ "outputs": [],
+ "source": [
+ "import datasets\n",
+ "import random\n",
+ "import pandas as pd\n",
+ "from IPython.display import display, HTML\n",
+ "\n",
+ "def show_random_elements(dataset, num_examples=5):\n",
+ " assert num_examples <= len(dataset), \"Can't pick more elements than there are in the dataset.\"\n",
+ " picks = []\n",
+ " for _ in range(num_examples):\n",
+ " pick = random.randint(0, len(dataset)-1)\n",
+ " while pick in picks:\n",
+ " pick = random.randint(0, len(dataset)-1)\n",
+ " picks.append(pick)\n",
+ " \n",
+ " df = pd.DataFrame(dataset[picks])\n",
+ " for column, typ in dataset.features.items():\n",
+ " if isinstance(typ, datasets.ClassLabel):\n",
+ " df[column] = df[column].transform(lambda i: typ.names[i])\n",
+ " display(HTML(df.to_html()))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "executionInfo": {
+ "elapsed": 313,
+ "status": "ok",
+ "timestamp": 1669576349464,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "wVadlxpikhyQ",
+ "outputId": "c2ce7fad-8455-4705-970c-6e31910bfac6"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "95"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "len(result)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 313
+ },
+ "executionInfo": {
+ "elapsed": 385,
+ "status": "error",
+ "timestamp": 1669576351222,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "VD4OhkhBj7eT",
+ "outputId": "7b7ec7fd-8f06-4550-f6fa-0f6c78e737cb"
+ },
+ "outputs": [
+ {
+ "ename": "KeyError",
+ "evalue": "\"None of [Int64Index([53, 82, 92, 63, 6], dtype='int64')] are in the [columns]\"",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
+ "Cell \u001b[0;32mIn [16], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mshow_random_elements\u001b[49m\u001b[43m(\u001b[49m\u001b[43mresult\u001b[49m\u001b[43m)\u001b[49m\n",
+ "Cell \u001b[0;32mIn [14], line 15\u001b[0m, in \u001b[0;36mshow_random_elements\u001b[0;34m(dataset, num_examples)\u001b[0m\n\u001b[1;32m 12\u001b[0m pick \u001b[38;5;241m=\u001b[39m random\u001b[38;5;241m.\u001b[39mrandint(\u001b[38;5;241m0\u001b[39m, \u001b[38;5;28mlen\u001b[39m(dataset)\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m)\n\u001b[1;32m 13\u001b[0m picks\u001b[38;5;241m.\u001b[39mappend(pick)\n\u001b[0;32m---> 15\u001b[0m df \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mDataFrame(\u001b[43mdataset\u001b[49m\u001b[43m[\u001b[49m\u001b[43mpicks\u001b[49m\u001b[43m]\u001b[49m)\n\u001b[1;32m 16\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m column, typ \u001b[38;5;129;01min\u001b[39;00m dataset\u001b[38;5;241m.\u001b[39mfeatures\u001b[38;5;241m.\u001b[39mitems():\n\u001b[1;32m 17\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(typ, datasets\u001b[38;5;241m.\u001b[39mClassLabel):\n",
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/pandas/core/frame.py:3811\u001b[0m, in \u001b[0;36mDataFrame.__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 3809\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_iterator(key):\n\u001b[1;32m 3810\u001b[0m key \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(key)\n\u001b[0;32m-> 3811\u001b[0m indexer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcolumns\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_indexer_strict\u001b[49m\u001b[43m(\u001b[49m\u001b[43mkey\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcolumns\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m[\u001b[38;5;241m1\u001b[39m]\n\u001b[1;32m 3813\u001b[0m \u001b[38;5;66;03m# take() does not accept boolean indexers\u001b[39;00m\n\u001b[1;32m 3814\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(indexer, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdtype\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m) \u001b[38;5;241m==\u001b[39m \u001b[38;5;28mbool\u001b[39m:\n",
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/pandas/core/indexes/base.py:6108\u001b[0m, in \u001b[0;36mIndex._get_indexer_strict\u001b[0;34m(self, key, axis_name)\u001b[0m\n\u001b[1;32m 6105\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 6106\u001b[0m keyarr, indexer, new_indexer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_reindex_non_unique(keyarr)\n\u001b[0;32m-> 6108\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_raise_if_missing\u001b[49m\u001b[43m(\u001b[49m\u001b[43mkeyarr\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindexer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis_name\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 6110\u001b[0m keyarr \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtake(indexer)\n\u001b[1;32m 6111\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(key, Index):\n\u001b[1;32m 6112\u001b[0m \u001b[38;5;66;03m# GH 42790 - Preserve name from an Index\u001b[39;00m\n",
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/pandas/core/indexes/base.py:6168\u001b[0m, in \u001b[0;36mIndex._raise_if_missing\u001b[0;34m(self, key, indexer, axis_name)\u001b[0m\n\u001b[1;32m 6166\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m use_interval_msg:\n\u001b[1;32m 6167\u001b[0m key \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(key)\n\u001b[0;32m-> 6168\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNone of [\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkey\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m] are in the [\u001b[39m\u001b[38;5;132;01m{\u001b[39;00maxis_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m]\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 6170\u001b[0m not_found \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(ensure_index(key)[missing_mask\u001b[38;5;241m.\u001b[39mnonzero()[\u001b[38;5;241m0\u001b[39m]]\u001b[38;5;241m.\u001b[39munique())\n\u001b[1;32m 6171\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnot_found\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m not in index\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
+ "\u001b[0;31mKeyError\u001b[0m: \"None of [Int64Index([53, 82, 92, 63, 6], dtype='int64')] are in the [columns]\""
+ ]
+ }
+ ],
+ "source": [
+ "show_random_elements(result)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 313
+ },
+ "executionInfo": {
+ "elapsed": 387,
+ "status": "error",
+ "timestamp": 1669576355089,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "4UubtsoakHA3",
+ "outputId": "19c6e23f-e9fa-498f-cc4c-df63f8207b70"
+ },
+ "outputs": [
+ {
+ "ename": "TypeError",
+ "evalue": "ignored",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mraw_datasets\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_dataset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+ "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/datasets/load.py\u001b[0m in \u001b[0;36mload_dataset\u001b[0;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, **config_kwargs)\u001b[0m\n\u001b[1;32m 1700\u001b[0m \u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1701\u001b[0m \"\"\"\n\u001b[0;32m-> 1702\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mPath\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDATASET_STATE_JSON_FILENAME\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexists\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1703\u001b[0m raise ValueError(\n\u001b[1;32m 1704\u001b[0m \u001b[0;34m\"You are trying to load a dataset that was saved using `save_to_disk`. \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/lib/python3.7/pathlib.py\u001b[0m in \u001b[0;36m__new__\u001b[0;34m(cls, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1025\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcls\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mPath\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1026\u001b[0m \u001b[0mcls\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mWindowsPath\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'nt'\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mPosixPath\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1027\u001b[0;31m \u001b[0mself\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_from_parts\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minit\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1028\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_flavour\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_supported\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1029\u001b[0m raise NotImplementedError(\"cannot instantiate %r on your system\"\n",
+ "\u001b[0;32m/usr/lib/python3.7/pathlib.py\u001b[0m in \u001b[0;36m_from_parts\u001b[0;34m(cls, args, init)\u001b[0m\n\u001b[1;32m 672\u001b[0m \u001b[0;31m# right flavour.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 673\u001b[0m \u001b[0mself\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__new__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcls\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 674\u001b[0;31m \u001b[0mdrv\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mroot\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_parse_args\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 675\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_drv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdrv\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 676\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_root\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mroot\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/lib/python3.7/pathlib.py\u001b[0m in \u001b[0;36m_parse_args\u001b[0;34m(cls, args)\u001b[0m\n\u001b[1;32m 656\u001b[0m \u001b[0mparts\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_parts\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 657\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 658\u001b[0;31m \u001b[0ma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfspath\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 659\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 660\u001b[0m \u001b[0;31m# Force-cast str subclasses to str (issue #21127)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;31mTypeError\u001b[0m: expected str, bytes or os.PathLike object, not DataFrame"
+ ]
+ }
+ ],
+ "source": [
+ "raw_datasets = load_dataset(result)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 145,
+ "referenced_widgets": [
+ "0b38e872bc524464a2b3abe7f2f9b0be",
+ "c6a5f491bb4c4136bcb5f90d3365bd5f",
+ "05b2a71290474944b5ae83e6acbe6adc",
+ "b8b0c77876a0404db627bac733d028e8",
+ "92023e14dbcf4c218f338c926e40ae14",
+ "03c8bdaa055e465f8a941ff333767409",
+ "664e934211bb4356ae5426686f0035b3",
+ "c80b42c6b5c04f4e9452c7af595f1d2c",
+ "ef09742724b34b75b051ac54db2383ed",
+ "0c4d50cf8f8d425e86960bc2dc269c89",
+ "01c98b14c07d4258aab7671240838ef6",
+ "243833c3431e4353af27113e5a8b0a7f",
+ "465d36a2f4b340dbbb7844f5187a91c6",
+ "6bc673e8cebe4c28bc7fb967615bed9a",
+ "a68722b5ccb144e2bca404b7cd00cfcb",
+ "b8ad8216b8df4dfb9f87d82824c65087",
+ "ef9b130ff1264814bb2f80c597466689",
+ "3ff8b3ad219c430083498e2710f9783b",
+ "d27a766c98bf4b858d145d88c69d34f6",
+ "67627aa46685425fba1b801c25d8f5c0",
+ "47f89064d61442caba4adf13852b1708",
+ "5168fe5634ee4077a558b7328f3a1dbc",
+ "4f5c545ae1c949a2990d557fa6152376",
+ "33e5a40561e64bae86a488e0e62e7597",
+ "9c73476e79a84b1a9361842441c52d53",
+ "07198da37bbe454db23f02d9bf9ad855",
+ "2a3b7cc5e582416caa24dd2360bb2664",
+ "158c7ddf69924f27b637b9a2f11bcaa0",
+ "1bee7da564a74fbb9521433b2bd8ad54",
+ "05aec460b82241ad9da702e6398f83a9",
+ "38fb2ec3ed86413bacf3213f71cbe4cd",
+ "df0b2994481f47568d388440024dff5a",
+ "103fbfda1b924f1b87ead6dd93ebe447",
+ "3c70c6d3f27e4ed6ad3e11833ab5a5fc",
+ "2205adb4fcd649e78977990748e1e0f3",
+ "568fc52953454ea398132e8eabf2f7a3",
+ "ba63044392144348b8e4c30869643010",
+ "679aadea6b11431682f884b5ef26c0d3",
+ "e07d939742d54ac29c8f8e00b7af5604",
+ "01d888d4b4f449af85114e6da4570452",
+ "558a98c82b4a458096d2f7f5e1088673",
+ "90697bae783b45aeaf1f448d31e3b4c5",
+ "ecbbff87ffa1445e8946155b04f7cc0d",
+ "80d4b0bdb13e444a84b3ccebb6f7eeb0"
+ ]
+ },
+ "executionInfo": {
+ "elapsed": 5037,
+ "status": "ok",
+ "timestamp": 1669576365017,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "ZdPQtI-WlD5H",
+ "outputId": "b882fa2a-c627-4203-d520-f8f000d7597e"
+ },
+ "outputs": [],
+ "source": [
+ "from transformers import AutoTokenizer\n",
+ " \n",
+ "tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "executionInfo": {
+ "elapsed": 492,
+ "status": "ok",
+ "timestamp": 1669280828857,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "kjc19-dOl-JX",
+ "outputId": "f21bb653-ef50-44fd-9e00-b85628d910bd"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'input_ids': [0, 31414, 6, 42, 65, 3645, 328, 2], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1]}"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "tokenizer(\"Hello, this one sentence!\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "executionInfo": {
+ "elapsed": 1041,
+ "status": "ok",
+ "timestamp": 1669576379512,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "gduPqN_OmDrY",
+ "outputId": "9f0aa066-7140-4aaf-d3f3-b99257ef5e82"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "{'input_ids': [[0, 31414, 6, 42, 65, 3645, 328, 2], [0, 713, 16, 277, 3645, 4, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1]]}\n"
+ ]
+ }
+ ],
+ "source": [
+ "with tokenizer.as_target_tokenizer():\n",
+ " print(tokenizer([\"Hello, this one sentence!\", \"This is another sentence.\"]))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "executionInfo": {
+ "elapsed": 428,
+ "status": "ok",
+ "timestamp": 1669576381572,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "7cRl0UmbmPBv",
+ "outputId": "bcda0139-7288-423e-a570-7d525e1af848"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "{'input_ids': [[0, 133, 37920, 1421, 6, 21, 441, 7, 7006, 10, 10556, 22259, 11759, 609, 11, 10, 1810, 3143, 9, 29943, 5473, 11174, 4458, 4, 18547, 46602, 7085, 8, 4412, 6979, 4040, 991, 3809, 260, 1827, 1021, 7485, 5000, 21, 6126, 11, 5, 18067, 443, 396, 486, 687, 9285, 4, 133, 1421, 6, 3891, 6, 2092, 3901, 7, 892, 41724, 219, 1090, 337, 9013, 11759, 223, 28900, 12418, 1274, 8, 41724, 219, 1090, 337, 28456, 11, 430, 12396, 8, 22259, 3505, 4, 2], [0, 574, 3141, 19, 23459, 2088, 33906, 417, 12, 725, 134, 2633, 5943, 709, 1118, 7, 2301, 19, 5, 5685, 221, 6153, 12, 725, 134, 48661, 6, 420, 5, 80, 434, 17369, 1687, 4, 18522, 5181, 5943, 39209, 11, 70, 542, 12170, 337, 1538, 3451, 6, 8, 11, 1437, 12170, 337, 1538, 2428, 2003, 21242, 3406, 5, 29401, 33906, 417, 12, 725, 134, 48661, 6, 11187, 24, 13072, 39209, 11, 2428, 2003, 21242, 19, 5, 5685, 221, 6153, 12, 725, 134, 48661, 4, 713, 2609, 24864, 41, 10405, 227, 221, 6153, 12, 725, 134, 6, 5181, 8, 1437, 12170, 337, 1938, 4, 3750, 5, 239, 5181, 6, 221, 6153, 12, 725, 134, 2301, 11, 2428, 14218, 36, 13055, 487, 12, 725, 134, 12, 406, 43, 19057, 55, 6, 9641, 2301, 19, 33906, 417, 12, 725, 134, 58, 275, 11, 748, 27771, 12, 725, 134, 3618, 4, 2], [0, 565, 783, 368, 12, 53, 45, 13418, 21130, 1580, 12, 38871, 221, 11621, 487, 16, 3059, 19, 2129, 1374, 7967, 11, 11707, 2562, 4, 43253, 1178, 13998, 2678, 661, 39917, 924, 614, 256, 13459, 1380, 38, 36, 448, 13459, 100, 43, 8151, 8, 1762, 9, 7522, 398, 2744, 255, 3551, 38763, 11, 221, 11621, 487, 12, 3530, 23991, 4, 1121, 44161, 9, 221, 11621, 487, 4091, 10191, 1626, 7241, 6673, 37263, 12, 30231, 256, 13459, 100, 30223, 8, 42625, 256, 13459, 100, 8151, 15, 11707, 2562, 4590, 4, 18348, 1452, 9956, 12, 805, 21912, 9, 221, 11621, 487, 11, 10, 11707, 2562, 18292, 1421, 20635, 263, 24608, 1626, 16570, 34939, 8, 16739, 4, 7199, 4735, 6, 23991, 11509, 24756, 448, 846, 12, 44191, 3103, 25, 10, 1421, 44368, 32, 18105, 37174, 7, 48291, 3103, 12, 6078, 500, 6214, 44131, 255, 3551, 12, 43728, 44193, 1242, 46513, 2115, 221, 11621, 487, 21912, 4, 2], [0, 250, 746, 9, 204, 3414, 9543, 29, 58, 13773, 4, 104, 1290, 405, 34201, 8, 2167, 2192, 58, 727, 207, 8, 727, 207, 13, 11274, 1843, 1725, 493, 31435, 6, 6164, 4, 406, 207, 8, 727, 207, 13, 19361, 4311, 324, 5104, 23665, 242, 6, 727, 207, 8, 727, 207, 13, 3089, 102, 7164, 1000, 12, 448, 6, 727, 207, 8, 727, 207, 13, 19361, 4311, 324, 5104, 31926, 90, 14075, 6, 727, 207, 8, 6705, 207, 13, 1698, 859, 687, 13235, 14148, 354, 6, 8, 727, 207, 8, 6705, 4, 398, 207, 13, 44643, 1906, 28344, 281, 16482, 3252, 179, 5166, 6, 4067, 4, 133, 86, 7, 898, 20047, 31, 290, 7, 545, 5251, 6, 2704, 59, 231, 5251, 13, 7728, 7094, 4, 2], [0, 37724, 994, 13, 786, 12, 625, 33591, 3650, 58, 10543, 36, 40747, 2088, 33314, 2194, 6, 10947, 3137, 368, 27607, 2192, 6, 1403, 12, 38641, 5073, 6, 24657, 6, 526, 3038, 6, 2113, 9, 1416, 6, 335, 15, 1131, 1416, 6, 8, 2416, 11, 5, 11593, 73, 37558, 4286, 322, 41981, 35, 27003, 3597, 36, 282, 5214, 5379, 19, 3858, 6, 295, 5214, 27097, 19, 36857, 43, 58, 1165, 4, 133, 731, 9, 8456, 31552, 21, 2107, 4, 398, 207, 13, 3597, 19, 3858, 8, 291, 4, 306, 207, 13, 36857, 4, 133, 144, 1537, 2188, 13, 614, 31552, 11, 3597, 19, 3858, 58, 30341, 5, 14255, 8456, 12234, 36, 3079, 8871, 50, 602, 540, 87, 14027, 36, 1570, 20186, 61, 21, 2260, 528, 7, 16429, 1796, 31, 5, 8456, 50, 526, 3038, 4, 42848, 15589, 2113, 9, 1131, 1416, 36, 642, 48054, 10470, 288, 4, 2546, 43, 34852, 3625, 19, 48059, 3650, 11, 3858, 4, 42395, 6, 5, 31552, 12, 12501, 12653, 2433, 24657, 8, 1403, 12, 38641, 5073, 58, 55, 9015, 11, 1484, 19, 3858, 87, 11, 167, 19, 36857, 36, 642, 41552, 288, 4, 2546, 322, 2], [0, 133, 1683, 9, 1511, 3824, 2756, 15, 70, 5177, 25384, 4075, 17408, 648, 89, 16, 10, 699, 37272, 1186, 13, 5, 30972, 22523, 29, 9, 5, 5177, 15821, 14337, 227, 36612, 4, 1225, 4, 245, 8, 508, 4, 466, 46911, 119, 8, 24297, 227, 112, 4, 401, 8, 132, 4, 306, 46911, 119, 13, 41, 4091, 1182, 1757, 4084, 1521, 6, 147, 3551, 14497, 8, 9592, 21056, 7396, 4, 2709, 6609, 2514, 87, 389, 17, 23171, 47049, 119, 6, 3551, 14497, 6, 9592, 8, 190, 10596, 8151, 9, 3222, 7841, 8244, 2329, 44231, 28807, 12, 134, 8, 4420, 12, 38838, 8276, 7280, 4, 2], [0, 4993, 38553, 1827, 29016, 9, 326, 2462, 39467, 1452, 11, 305, 31732, 24162, 36, 282, 5457, 155, 238, 1266, 36, 45009, 21993, 38369, 43, 746, 326, 2462, 39467, 1452, 11772, 21, 132, 4, 5677, 12, 12851, 723, 11, 2900, 36, 35255, 46710, 820, 6094, 73, 571, 43, 87, 29051, 36, 28129, 46710, 291, 6094, 73, 43619, 322, 1121, 39342, 11481, 26499, 15491, 3744, 11, 7182, 2911, 14263, 6, 1266, 326, 2462, 39467, 1452, 542, 4092, 13484, 21, 321, 4, 2022, 207, 23, 321, 4, 246, 8, 155, 4, 288, 44200, 448, 326, 2462, 39467, 1452, 11, 12378, 2900, 11576, 6, 8, 204, 4, 288, 207, 23, 321, 4, 246, 8, 112, 4, 288, 44200, 448, 326, 2462, 39467, 1452, 11, 12378, 29051, 4, 133, 9658, 542, 4092, 2900, 12, 560, 12, 2911, 42089, 1750, 21, 321, 4, 1244, 6, 9172, 2900, 19157, 7719, 13, 19567, 1043, 3917, 2617, 1002, 44944, 4, 10643, 291, 19756, 2849, 8267, 33101, 3186, 12, 38871, 26920, 2154, 13001, 36, 6153, 1000, 43, 3092, 31, 10665, 1668, 2900, 33076, 9354, 36, 282, 5457, 112, 238, 80, 15400, 7454, 347, 2900, 33076, 9354, 3092, 36, 39826, 245, 27758, 8, 38991, 245, 35629, 43, 58, 5685, 7, 5, 2849, 19693, 16980, 12234, 9, 326, 2462, 39467, 1452, 9, 389, 17844, 73, 9043, 73, 1343, 417, 36, 90, 783, 368, 3149, 464, 646, 207, 2915, 42645, 126, 1092, 207, 8, 126, 4652, 4234, 4067, 322, 448, 4104, 32188, 25993, 36, 282, 44057, 8716, 131, 32487, 34222, 43, 1487, 239, 12, 4483, 30782, 45156, 11, 258, 23991, 36, 43348, 30782, 10596, 5375, 346, 35, 365, 4, 176, 8, 706, 4, 176, 6, 4067, 322, 565, 2462, 39467, 1452, 15608, 21, 1474, 13, 258, 2849, 8267, 33101, 3092, 23, 10, 34948, 4249, 12234, 36, 11338, 17844, 73, 9043, 73, 1343, 417, 131, 295, 5457, 195, 322, 565, 2462, 39467, 1452, 10529, 17844, 73, 9043, 73, 1343, 417, 26914, 9015, 16570, 39974, 6, 217, 1498, 50, 583, 12, 27527, 44702, 2485, 6, 1118, 19, 1155, 11, 258, 25691, 1242, 18137, 3092, 36, 282, 5457, 158, 131, 9640, 7606, 2915, 35, 38991, 245, 27758, 6, 126, 6232, 31558, 38991, 245, 35629, 6, 126, 5449, 23528, 22886, 13249, 3917, 2617, 38000, 783, 368, 1940, 9, 326, 2462, 39467, 1452, 222, 45, 2082, 7, 42407, 19, 1925, 2383, 36436, 9639, 9324, 6601, 11852, 11, 255, 134, 12, 4301, 196, 46442, 21716, 4031, 5709, 12, 15477, 16325, 20398, 4, 2], [0, 15622, 12, 23944, 274, 36995, 12, 7215, 46624, 1109, 8, 35235, 40867, 16572, 36, 597, 36995, 12, 21631, 448, 43, 1487, 14, 19567, 4450, 45357, 842, 13118, 1061, 5948, 33284, 21120, 11416, 15, 34194, 17408, 6, 941, 23, 43261, 42037, 4, 133, 43261, 44278, 1886, 14215, 1588, 179, 23476, 6379, 25655, 11032, 1938, 9, 83, 4540, 565, 47188, 12, 46437, 6, 8, 1886, 14215, 1588, 179, 16, 38827, 3215, 624, 26683, 1295, 44278, 2383, 43092, 34003, 4, 4528, 5588, 58, 67, 6373, 11, 26914, 46005, 1588, 41098, 10114, 3551, 36, 118, 3888, 347, 43, 2383, 38871, 28449, 19655, 154, 83, 4540, 565, 28513, 31, 1484, 19, 11707, 4, 2], [0, 14693, 7, 5, 11259, 9, 10080, 15010, 8823, 155, 17, 23171, 34606, 71, 5, 78, 12234, 6, 52, 2006, 239, 8, 614, 11333, 4, 39892, 42934, 7, 614, 11333, 6, 239, 11333, 58, 17407, 30, 9094, 34517, 12, 12516, 2787, 1940, 6, 1130, 13135, 9, 1353, 3783, 255, 4590, 8, 18300, 208, 12, 14175, 7522, 398, 2744, 255, 3551, 8823, 4, 15638, 33862, 17014, 32648, 13515, 268, 2771, 19, 251, 12, 1279, 2167, 3783, 255, 4590, 14, 56, 11693, 11424, 241, 12228, 3611, 58, 303, 3059, 19, 7757, 10118, 19, 468, 4571, 29, 11, 614, 11333, 4, 2], [0, 11773, 6, 52, 311, 14, 10, 10114, 3551, 12, 14175, 12260, 1843, 179, 3260, 6790, 16807, 48223, 43333, 4, 133, 1577, 2796, 3551, 12260, 1843, 179, 3260, 9849, 1577, 2796, 3551, 28662, 88, 10, 10490, 874, 18366, 4590, 6, 18241, 405, 11539, 5, 28662, 9, 14887, 41074, 1988, 8, 36005, 253, 1630, 8362, 137, 26574, 1258, 4, 133, 12932, 3551, 12260, 1843, 179, 3260, 9849, 12932, 3551, 28662, 1065, 18366, 4590, 6, 32947, 1823, 20506, 1506, 10003, 46065, 1630, 8362, 46644, 2961, 1065, 14887, 41074, 1988, 511, 26574, 1258, 4, 2765, 36226, 12260, 1843, 179, 3260, 8151, 11, 430, 10114, 3551, 2301, 6, 52, 19154, 5, 13135, 9, 12461, 4829, 16807, 32293, 4, 2], [0, 36342, 158, 6, 39549, 1050, 16640, 6, 234, 2118, 29990, 872, 12, 1116, 12, 35435, 28513, 58, 33389, 11, 26394, 4063, 8, 11311, 1688, 3894, 337, 16640, 4, 13365, 2716, 1499, 9, 234, 337, 24240, 31, 26394, 4063, 6, 39475, 50, 30737, 636, 2329, 225, 1975, 9636, 179, 27745, 11, 15540, 222, 45, 11330, 16570, 24971, 6, 53, 32581, 1130, 5, 346, 9, 17215, 16570, 4590, 36, 7164, 31229, 43, 8, 33076, 9354, 4, 565, 29340, 9, 209, 15540, 19, 46442, 21716, 4031, 578, 102, 234, 2118, 29990, 4238, 31639, 578, 42116, 352, 1130, 230, 6078, 29, 8, 33076, 9354, 4, 13365, 2716, 1499, 9, 234, 337, 24240, 31, 15540, 14, 13385, 15, 438, 23982, 28513, 8, 393, 2226, 1668, 1726, 25126, 9, 22201, 44828, 4590, 88, 5, 1925, 23, 1389, 6305, 7, 167, 450, 11, 16570, 12, 26195, 3122, 4, 2], [0, 170, 303, 41134, 30344, 982, 7, 28, 3059, 19, 1160, 515, 1162, 11, 70, 5, 6807, 1274, 6, 4682, 6181, 1668, 4, 2709, 158, 12, 180, 4258, 16782, 13, 379, 17, 23171, 1397, 21996, 6, 19, 8, 396, 2885, 30798, 5883, 6, 10, 4069, 9, 1046, 8, 2099, 8, 5, 41134, 30344, 194, 4065, 9389, 50, 9980, 10312, 2885, 7006, 994, 4, 42850, 6, 41134, 30344, 194, 355, 27930, 335, 81, 5145, 5154, 25083, 13, 799, 1537, 6357, 6, 217, 1907, 17, 23171, 176, 7704, 6, 12854, 8, 1144, 2988, 4, 15953, 10699, 9158, 20070, 969, 14, 27930, 5139, 16877, 88, 5154, 6041, 13, 10, 1810, 1186, 9, 801, 568, 37817, 4, 2], [0, 10197, 2], [0, 45210, 47644, 2747, 7265, 21, 3625, 723, 11, 5, 7346, 40715, 9, 2530, 25, 1118, 7, 664, 3362, 36, 1366, 4, 245, 20186, 89, 58, 5063, 1046, 12, 3368, 5550, 11, 47644, 2744, 1389, 3486, 208, 2371, 100, 4, 250, 22792, 1966, 1487, 117, 1233, 14697, 227, 47644, 2747, 7265, 6, 47644, 2747, 1940, 8, 47644, 2744, 1389, 4, 2], [0, 41981, 35, 20, 346, 9, 6051, 25705, 21, 3625, 540, 8, 618, 23655, 1098, 360, 58, 4163, 11, 5, 19696, 2401, 661, 333, 4, 970, 21, 117, 1233, 2249, 227, 278, 12, 658, 86, 8, 1925, 872, 258, 11, 10371, 2088, 8, 1923, 1200, 4, 133, 746, 346, 9, 1007, 2187, 30264, 1635, 8, 14, 11, 5, 2702, 443, 8065, 11, 10753, 19, 5, 676, 4, 2], [0, 133, 208, 4322, 467, 2226, 11, 42, 173, 9849, 10, 2007, 2748, 7, 5177, 2835, 196, 3041, 5588, 149, 7983, 8367, 1938, 4, 133, 2937, 9, 5, 5561, 2386, 41, 1365, 2748, 7, 2210, 3041, 5588, 8, 1639, 19329, 1274, 13, 3513, 260, 19851, 634, 7983, 8367, 1538, 19416, 5638, 20413, 4, 133, 7094, 9, 5, 208, 4322, 31260, 14464, 21, 29854, 11, 1110, 9, 5, 4334, 1383, 11, 5, 31260, 36173, 7, 6925, 10, 239, 208, 4322, 6029, 4, 133, 819, 8, 251, 12, 1279, 5443, 9, 5, 31260, 33, 57, 5116, 7646, 4, 243, 21, 2343, 14, 5, 10012, 9, 2329, 225, 833, 16, 1130, 19, 723, 23737, 36500, 11772, 8, 5181, 4, 250, 10012, 9, 1718, 207, 21, 4756, 23, 654, 33397, 347, 8, 10, 10012, 9, 1191, 207, 23, 1812, 33397, 347, 6, 4067, 4, 2], [0, 530, 495, 3266, 3030, 13, 38376, 1313, 7931, 969, 205, 22792, 19, 97, 13998, 11575, 24414, 17294, 6, 217, 13515, 268, 8, 7974, 2787, 34517, 36, 4444, 428, 43, 1940, 19, 10, 937, 712, 11, 31232, 81, 86, 6, 22206, 9, 10, 7821, 5206, 9161, 1263, 4, 14699, 9, 23808, 9, 239, 31232, 8823, 36, 530, 495, 28696, 1866, 181, 448, 43, 14903, 227, 1484, 6, 6272, 31, 545, 126, 706, 688, 4, 18348, 1452, 9956, 8823, 1382, 6154, 6673, 281, 636, 23, 656, 86, 332, 6, 14179, 1567, 10, 38706, 7333, 636, 1263, 19, 10, 15594, 3868, 86, 8, 937, 712, 11, 10301, 9, 239, 31232, 38376, 81, 86, 4, 2], [0, 2709, 2132, 8826, 173, 12, 658, 30, 3425, 6150, 21, 5131, 4, 22388, 985, 12, 9433, 927, 8571, 58, 13773, 4, 4280, 207, 9, 8826, 2329, 16375, 7, 10, 9320, 5626, 217, 4884, 4, 3684, 8826, 511, 10, 15848, 5626, 8, 144, 8826, 19, 10, 24926, 5626, 362, 17379, 11780, 148, 6690, 6, 9641, 129, 3490, 4, 398, 207, 9, 8826, 19, 10, 9320, 5626, 362, 856, 12589, 10395, 50, 97, 26656, 4, 448, 33305, 17379, 163, 1092, 6, 856, 12589, 10395, 6, 8, 9486, 30321, 6526, 833, 1389, 58, 3625, 34852, 19, 5, 920, 17, 27, 29, 856, 12589, 10395, 1389, 6, 8, 19, 9486, 30321, 6526, 833, 6, 39902, 10417, 10003, 6, 8, 39902, 34630, 4063, 10395, 1389, 11, 78, 8, 200, 234, 3297, 16380, 1925, 1514, 4, 2895, 408, 56, 2340, 1925, 3948, 8, 969, 13071, 30321, 90, 13310, 4, 13863, 2491, 4, 406, 207, 9, 8826, 969, 41, 23249, 6, 129, 65, 2633, 19, 12303, 4469, 90, 13310, 4, 1301, 687, 1561, 12527, 5895, 5065, 4594, 1899, 6316, 354, 35, 33295, 39490, 9, 17379, 163, 1092, 30367, 3441, 10437, 9, 2557, 1263, 7, 1416, 4, 3762, 6317, 8, 2724, 19964, 829, 1416, 19, 17379, 163, 1092, 4, 1121, 231, 1200, 11, 61, 129, 5, 985, 21, 2132, 30, 17379, 163, 1092, 30367, 6, 117, 5804, 21, 3744, 13, 5, 920, 4, 22113, 9, 167, 408, 829, 9288, 10943, 8992, 6, 65, 920, 21, 6181, 8, 9288, 9789, 6, 65, 920, 829, 181, 9475, 1334, 337, 8, 9288, 10943, 4, 1121, 5, 2405, 195, 408, 19, 17379, 163, 1092, 30367, 54, 222, 45, 1325, 5804, 6, 204, 408, 58, 9789, 129, 30, 9288, 8, 65, 920, 21, 6181, 21967, 8, 9288, 9789, 4, 10643, 13955, 14354, 29, 1060, 45304, 3552, 16, 684, 6, 6705, 36, 6468, 4, 406, 8871, 829, 11651, 6, 234, 5214, 176, 36, 134, 4, 466, 8871, 6979, 4040, 687, 32188, 6, 234, 5214, 245, 36, 306, 4, 401, 8871, 10, 4069, 9, 11651, 8, 6979, 4040, 687, 32188, 6, 234, 5214, 134, 36, 288, 4, 466, 8871, 38553, 1827, 8, 234, 5214, 134, 36, 288, 4, 466, 8871, 10, 4069, 9, 38553, 1827, 8, 11651, 5804, 4, 48080, 24806, 19, 11651, 12, 8338, 4411, 67, 181, 9475, 1334, 337, 5804, 969, 1266, 135, 3488, 11, 17379, 163, 1092, 1389, 9, 7004, 207, 8, 316, 4283, 4234, 4067, 6, 19, 181, 9475, 1334, 337, 5804, 5203, 11, 17379, 163, 1092, 26069, 157, 1065, 2340, 1186, 19, 10, 1266, 9, 501, 2036, 4751, 1168, 73, 574, 36, 6243, 5457, 290, 3570, 4, 245, 43, 23, 1407, 12, 658, 4, 37778, 30321, 6526, 833, 1389, 969, 10, 1266, 135, 7280, 9, 1510, 207, 19, 11651, 12, 8338, 4411, 1812, 207, 19, 181, 9475, 1334, 337, 5804, 4, 16213, 42089, 50, 20987, 11080, 26069, 36, 3865, 31370, 5448, 8, 40640, 18836, 43, 969, 1266, 3164, 27430, 9, 1814, 12, 6617, 207, 19, 11651, 12, 8338, 8, 8403, 12, 5607, 207, 19, 181, 9475, 1334, 337, 1416, 4, 40683, 132, 24130, 5, 18441, 1263, 9, 15430, 11651, 4411, 67, 181, 9475, 1334, 337, 45304, 716, 15, 5, 712, 11, 17379, 163, 1092, 1389, 8, 7280, 11, 12628, 17294, 4, 2], [0, 5771, 4881, 25465, 304, 12246, 6, 4146, 9, 5, 14073, 8289, 969, 786, 12, 179, 6646, 7375, 1571, 7, 16674, 19, 2098, 7, 5154, 7762, 215, 25, 28667, 13428, 6, 28667, 6976, 6, 8, 19290, 523, 1264, 3792, 37830, 4, 2], [0, 41981, 35, 20, 2249, 11, 4996, 18270, 176, 227, 1134, 21, 321, 4, 6232, 36, 4015, 207, 1501, 44871, 10280, 22455, 35, 321, 4, 19644, 7, 112, 4, 35544, 43, 36769, 384, 176, 73, 9043, 73, 4691, 6, 17758, 5, 2270, 34533, 4, 40080, 10427, 590, 6924, 26443, 31067, 36, 642, 28696, 321, 4, 19089, 238, 5300, 6826, 12628, 1380, 36, 642, 28696, 321, 4, 19089, 238, 8, 231, 12, 4691, 5179, 1656, 36, 642, 5457, 321, 4, 4197, 43, 58, 70, 357, 11, 5, 1416, 4411, 797, 333, 4, 970, 58, 262, 2187, 12, 3368, 1061, 6, 25438, 10, 795, 8191, 9, 1812, 207, 9, 1484, 481, 9, 1061, 6, 17758, 5, 2270, 1078, 34533, 4, 133, 14464, 9, 17480, 744, 8, 40519, 1098, 18391, 21, 2906, 31, 158, 4, 398, 207, 7, 132, 4, 466, 207, 36, 642, 5457, 321, 4, 40976, 322, 2], [0, 49043, 20, 1266, 1046, 21, 1812, 4, 306, 46710, 195, 4, 466, 107, 8, 5, 1266, 7425, 5580, 796, 467, 13, 17301, 27133, 810, 10437, 38, 733, 4, 176, 46710, 501, 4, 406, 2153, 133, 7089, 21, 1800, 11, 6164, 4, 288, 207, 36, 29572, 73, 14515, 238, 26574, 1258, 9, 10, 200, 8640, 846, 36, 6486, 548, 12, 179, 12, 6486, 548, 43, 21, 3744, 11, 132, 4, 176, 207, 36, 306, 73, 14515, 43, 8, 10012, 7, 15535, 10, 2723, 636, 24423, 5010, 36, 3603, 13055, 43, 21, 2139, 11, 132, 4, 398, 207, 36, 245, 73, 14515, 322, 3084, 9915, 8244, 37557, 50, 35462, 29122, 493, 17026, 2756, 4, 9058, 1484, 1552, 208, 10612, 500, 71, 5, 183, 9, 1965, 7089, 36, 134, 4, 134, 23528, 3684, 12, 27037, 15812, 23, 389, 360, 21, 365, 4, 134, 207, 36, 844, 73, 14515, 238, 145, 17480, 11, 262, 4, 176, 207, 36, 1558, 73, 14515, 322, 250, 538, 8579, 2756, 11, 112, 4, 134, 207, 36, 176, 73, 14515, 43, 23, 389, 360, 6, 117, 943, 538, 17705, 58, 6373, 148, 112, 76, 4, 3684, 12, 27037, 15812, 71, 389, 360, 21, 508, 4, 134, 207, 36, 2146, 73, 13726, 43, 8, 2771, 22081, 23, 112, 76, 21, 1812, 4, 398, 207, 36, 21948, 73, 27761, 322, 3750, 112, 12, 180, 1407, 12, 658, 6, 117, 3186, 2633, 19, 55, 87, 7212, 2242, 19339, 705, 8244, 38146, 6, 150, 132, 1484, 36, 246, 4, 176, 8871, 969, 7212, 6, 316, 36, 1646, 4, 288, 8871, 10439, 8, 2766, 36, 6551, 4, 306, 8871, 13946, 73, 39763, 2242, 19339, 705, 8244, 6701, 7150, 12257, 4, 2], [0, 1121, 5, 3044, 414, 278, 6, 66, 9, 31740, 246, 6217, 2696, 19, 117, 17491, 15, 5, 78, 183, 6, 52, 303, 41765, 36, 306, 8871, 15308, 19, 17491, 624, 5, 379, 7757, 360, 9, 4872, 646, 245, 31731, 6, 28405, 36, 306, 20186, 4067, 11, 5, 6731, 414, 278, 8174, 133, 26739, 1546, 115, 28224, 499, 17491, 19, 41, 443, 223, 5, 4797, 1633, 9158, 6, 10, 15608, 6, 8, 42561, 9, 7589, 4, 306, 4234, 5553, 4234, 8, 5913, 4234, 4067, 36, 2545, 4, 398, 4234, 7004, 4234, 8, 4893, 207, 11, 5, 6731, 414, 278, 238, 8, 9980, 10312, 11270, 534, 1575, 1433, 2343, 7, 28, 27930, 9, 17491, 4, 2], [0, 41981, 96, 2631, 30029, 1886, 17129, 5228, 11, 1600, 6, 10, 746, 9, 1764, 1484, 58, 12404, 36, 43348, 1046, 5549, 4, 134, 45009, 1092, 4, 406, 107, 6, 1718, 4, 306, 207, 8061, 3083, 107, 131, 1191, 4, 398, 207, 14705, 322, 133, 7310, 515, 111, 6443, 30, 31649, 1952, 111, 21, 10, 255, 2889, 11, 22619, 36, 2518, 4, 306, 8871, 8, 10, 8579, 11, 40801, 36, 4956, 4, 401, 8871, 19, 6097, 3553, 5638, 3983, 20506, 12589, 6184, 11, 234, 12642, 16508, 36, 2890, 4, 176, 207, 255, 2889, 73, 1898, 4, 176, 207, 8579, 6, 181, 41552, 288, 4, 19089, 238, 11, 12464, 16508, 36, 406, 4, 246, 207, 255, 2889, 73, 406, 4, 406, 207, 8579, 6, 295, 4, 29, 12345, 11, 258, 36, 401, 4, 401, 207, 255, 2889, 73, 1646, 4, 401, 207, 8579, 6, 181, 41552, 288, 4, 19089, 322, 14229, 1407, 12, 658, 6, 17491, 21, 3862, 12333, 30, 5, 2187, 11, 255, 2889, 1484, 11, 1132, 4, 466, 207, 8, 11, 8579, 1484, 11, 564, 4, 401, 207, 36, 282, 4, 29, 24521, 133, 1266, 7231, 675, 454, 12673, 9, 17491, 19, 5, 23000, 337, 9252, 1864, 2187, 21, 12641, 45009, 25050, 360, 11, 255, 2889, 6, 17445, 45009, 21540, 11, 8579, 4067, 36, 282, 4, 29, 24521, 4015, 4, 406, 207, 56, 2242, 4325, 2459, 10417, 8, 204, 4, 246, 207, 13109, 17491, 11, 8579, 6, 255, 2889, 1484, 56, 727, 207, 2242, 4325, 2459, 10417, 17491, 36, 282, 4, 29, 12345, 9640, 13428, 21, 195, 4, 288, 5251, 11, 255, 2889, 8, 195, 4, 176, 5251, 11, 8579, 6, 4067, 36, 282, 4, 29, 24521, 2895, 17491, 1484, 58, 25, 8307, 3320, 29177, 36, 4671, 4, 246, 207, 255, 2889, 73, 8101, 4, 466, 207, 8579, 6, 181, 41552, 288, 4, 3933, 322, 133, 1266, 3858, 250, 176, 5433, 176, 846, 8631, 1471, 11, 1484, 19, 17491, 21, 204, 4, 288, 8, 204, 4, 134, 11, 167, 19, 255, 2889, 8, 8579, 36, 282, 4, 29, 12345, 13, 1484, 11, 10272, 687, 12989, 155, 4, 406, 8, 155, 4, 466, 6, 4067, 36, 282, 4, 29, 24521, 8138, 1334, 2617, 30960, 21, 1455, 11, 6121, 4, 245, 207, 19, 255, 2889, 73, 5067, 4, 288, 207, 19, 8579, 36, 282, 4, 29, 12345, 7704, 34384, 20818, 11, 379, 4, 246, 207, 19, 255, 2889, 73, 1244, 4, 134, 207, 19, 8579, 36, 642, 41552, 288, 4, 2546, 238, 35462, 30404, 2199, 11, 316, 4, 306, 207, 19, 255, 2889, 73, 1570, 4, 401, 207, 19, 8579, 36, 282, 4, 29, 12345, 37256, 2199, 11, 155, 4, 401, 207, 19, 255, 2889, 73, 245, 4, 288, 207, 19, 8579, 36, 282, 4, 29, 24521, 2], [0, 41981, 35, 39509, 100, 3196, 12, 250, 12751, 27983, 1484, 36, 705, 1182, 4663, 853, 260, 6, 295, 5457, 18817, 131, 10512, 354, 853, 260, 5135, 333, 6, 295, 5457, 3330, 4397, 6731, 26231, 6, 295, 5457, 6791, 4, 846, 1182, 4663, 853, 260, 1145, 5, 2270, 34533, 9, 464, 31, 18043, 11, 10639, 28132, 39214, 17550, 2456, 1757, 14702, 2055, 406, 36, 119, 487, 1729, 2744, 406, 43, 23, 361, 377, 36, 642, 5457, 155, 4, 4283, 17935, 158, 12, 1092, 238, 8, 70, 5929, 22081, 253, 21996, 131, 1233, 5139, 4411, 6731, 26231, 58, 6373, 11, 13261, 13343, 9, 3126, 12, 29038, 44367, 28132, 39214, 6, 158, 12, 15139, 1656, 1296, 36, 17143, 23, 361, 8, 504, 377, 238, 475, 487, 1729, 2744, 406, 6, 10639, 809, 12, 27289, 1965, 6, 8, 15808, 611, 12, 16353, 7806, 33599, 33256, 36, 1250, 23, 504, 377, 322, 565, 6997, 4878, 19, 748, 1182, 4663, 853, 260, 1209, 246, 448, 21, 786, 12, 179, 6646, 7375, 7, 624, 12, 34996, 10512, 354, 853, 260, 1209, 246, 771, 4, 2895, 12661, 1061, 58, 10439, 50, 7212, 11, 17866, 6, 8, 4292, 19, 3263, 6997, 705, 524, 4360, 12572, 13310, 1632, 750, 4, 970, 58, 117, 1262, 12, 3368, 29649, 10184, 50, 3257, 4, 2], [0, 970, 58, 411, 1134, 36, 12380, 846, 6, 7216, 846, 6, 272, 2915, 6, 208, 7202, 6, 272, 7202, 6, 272, 6997, 322, 534, 261, 625, 36291, 1130, 28127, 45634, 12, 29101, 29964, 19187, 1118, 7, 24162, 19, 47670, 50, 19, 1931, 42825, 31079, 4, 250, 6195, 45634, 12, 29101, 29964, 19187, 21, 15708, 34852, 19, 31079, 8, 42, 1291, 21, 33110, 30, 910, 337, 4325, 1594, 2552, 4, 2], [0, 8064, 250, 12, 250, 4197, 12, 42751, 255, 12, 7841, 22201, 18836, 58, 44659, 3030, 30, 765, 39950, 4376, 8, 1530, 9, 44368, 12, 14175, 255, 4590, 30, 289, 8272, 12, 2379, 3320, 1949, 29184, 28892, 1966, 4, 41981, 35, 83, 746, 9, 132, 6, 5046, 406, 17792, 58, 2006, 11, 13998, 23982, 16570, 44807, 4, 37703, 12, 13664, 9, 209, 58, 4984, 30, 5, 1484, 108, 255, 4590, 6, 8, 292, 9, 106, 36, 9822, 530, 11194, 6, 24129, 134, 6, 230, 16966, 487, 134, 6, 234, 6570, 176, 6, 8, 255, 33893, 43, 11, 62, 7, 4772, 207, 16354, 4576, 725, 26121, 5921, 118, 4982, 1484, 4, 2895, 13998, 23982, 16570, 12, 38838, 9876, 1023, 1290, 36, 565, 5596, 43, 58, 2327, 11, 4576, 725, 26121, 5921, 118, 27745, 8, 272, 3632, 29, 6, 150, 145, 818, 11640, 11, 2340, 2900, 25671, 4, 2], [0, 23055, 31758, 1283, 3649, 14, 3927, 33995, 1864, 189, 28, 7163, 11, 4881, 5298, 3059, 19, 19104, 4, 133, 165, 3373, 11894, 935, 31548, 6, 49, 474, 3038, 6, 8, 1286, 3824, 13, 4881, 31548, 4, 38195, 1033, 35, 13609, 147, 4664, 58, 1432, 969, 5, 3968, 5139, 11, 33995, 1864, 4, 133, 5139, 58, 716, 2115, 8065, 28935, 468, 4571, 29, 3059, 19, 2906, 304, 9, 8143, 8321, 6, 1081, 575, 785, 6, 8, 24275, 338, 5332, 6, 8, 4878, 11, 5, 1965, 1484, 108, 5298, 4, 46994, 3320, 1075, 3855, 3489, 21, 45, 431, 566, 167, 1060, 1611, 969, 117, 468, 4571, 3855, 4, 2], [0, 1121, 1285, 6, 15812, 624, 155, 107, 21, 1118, 19, 5, 16782, 9, 5, 37622, 12, 43932, 1849, 826, 11, 38207, 36, 41543, 534, 2371, 43, 1144, 2988, 7967, 810, 1471, 50141, 12499, 35, 83, 746, 9, 28628, 1484, 58, 1165, 11, 5, 20070, 36, 698, 207, 19, 5300, 6826, 1380, 3082, 322, 19933, 1484, 19, 5300, 6826, 1380, 6395, 73, 6372, 969, 10, 1233, 3855, 11, 5300, 6826, 1380, 81, 195, 107, 9, 9841, 448, 36, 11194, 35, 321, 4, 134, 45009, 288, 4, 401, 131, 181, 5214, 288, 4, 5607, 1954, 4, 6395, 73, 6372, 35, 111, 288, 4, 401, 45009, 288, 4, 401, 131, 181, 41552, 288, 4, 27623, 322, 1121, 258, 1134, 6, 226, 8856, 597, 2782, 3625, 36, 11194, 35, 204, 4, 406, 45009, 398, 4, 246, 131, 181, 5214, 288, 4, 612, 4956, 1954, 4, 6395, 73, 6372, 35, 262, 4, 288, 45009, 698, 4, 406, 31558, 181, 41552, 288, 4, 27623, 238, 150, 255, 591, 3388, 2782, 3625, 129, 11, 5300, 6826, 1380, 6395, 73, 6372, 1484, 36, 11194, 35, 132, 4, 176, 45009, 134, 4, 401, 131, 181, 5214, 288, 4, 844, 1954, 4, 6395, 73, 6372, 35, 112, 4, 398, 45009, 245, 4, 176, 15408, 131, 181, 5214, 288, 4, 288, 34991, 322, 574, 8856, 597, 3855, 21, 10451, 11, 258, 1134, 81, 195, 107, 9, 9841, 448, 36, 642, 5214, 288, 4, 4111, 322, 9873, 6826, 1380, 3082, 1484, 56, 3625, 795, 19815, 12, 4892, 15048, 510, 672, 23, 18043, 36, 398, 4432, 646, 16925, 73, 4671, 5677, 742, 1954, 4, 973, 2881, 646, 1360, 73, 29443, 541, 742, 6094, 73, 574, 131, 181, 5214, 288, 4, 612, 3305, 238, 61, 21, 6147, 223, 5804, 36, 26871, 646, 32624, 73, 1570, 6750, 742, 1954, 4, 361, 2663, 646, 1558, 73, 1366, 21403, 742, 6094, 73, 574, 131, 181, 5214, 288, 4, 5606, 322, 26880, 5564, 155, 12, 180, 15812, 21, 601, 8, 973, 207, 1954, 4, 10, 6126, 15812, 9, 1105, 8, 3330, 4234, 4067, 36, 642, 5214, 288, 4, 612, 3170, 13, 5300, 6826, 6395, 73, 6372, 322, 2], [0, 170, 311, 14, 2166, 47810, 17294, 27380, 31, 4520, 1399, 3156, 9, 881, 4590, 64, 28, 341, 7, 22929, 2849, 15076, 16685, 9, 4590, 11, 1337, 25671, 6, 396, 2052, 2655, 50, 5, 240, 13, 22481, 22462, 4, 37666, 6, 52, 8085, 5, 801, 9, 84, 5448, 13, 23785, 29928, 2199, 25378, 21611, 4, 36949, 542, 16101, 25376, 21026, 6948, 4878, 8, 7425, 5580, 39974, 6, 52, 12775, 26162, 227, 2245, 8, 18093, 24477, 11576, 11, 258, 18292, 8, 1050, 4003, 33716, 7931, 4, 2], [0, 41981, 35, 96, 1484, 19, 12854, 11793, 8640, 250, 6, 5, 1814, 12, 1208, 12385, 58, 1130, 810, 9, 18939, 6, 2424, 853, 4031, 6, 12714, 30499, 6, 8, 11086, 8701, 2122, 31779, 36, 510, 28696, 479, 2546, 322, 1121, 1484, 19, 12854, 11793, 8640, 250, 6, 5, 132, 12, 180, 12385, 58, 1130, 810, 9, 2424, 853, 4031, 6, 12714, 30499, 6, 8, 11086, 8701, 2122, 31779, 36, 510, 28696, 479, 2546, 322, 2], [0, 250, 92, 132, 12, 32673, 467, 9820, 5, 240, 13, 41, 23, 13700, 483, 4, 41981, 35, 208, 29262, 9352, 6, 7953, 207, 2943, 6, 5138, 45009, 466, 107, 793, 19, 314, 13228, 32127, 29277, 1499, 13484, 2631, 45009, 401, 207, 58, 1165, 4, 40258, 7012, 12720, 58, 1122, 227, 42344, 12, 25894, 12, 245, 347, 8, 42344, 12, 25894, 12, 245, 347, 176, 9352, 4682, 14, 379, 207, 9, 42344, 12, 25894, 12, 245, 347, 176, 9352, 56, 4398, 23, 13700, 856, 11804, 34775, 4411, 321, 207, 11, 42344, 12, 25894, 12, 245, 347, 4, 3376, 448, 2996, 222, 45, 10356, 3625, 227, 132, 12, 8, 155, 12, 32673, 1743, 36, 1646, 290, 6617, 45009, 3079, 4956, 4411, 753, 195, 6361, 45009, 26518, 398, 9841, 448, 8724, 73, 1208, 6, 19104, 9, 2249, 48906, 1092, 2517, 7, 504, 3706, 48610, 133, 464, 9, 4996, 36584, 176, 31, 18043, 7, 706, 688, 21, 112, 4, 4956, 36, 4015, 207, 1501, 44871, 10280, 22455, 6, 112, 4, 4197, 12, 176, 4, 3714, 43, 38762, 73, 9043, 228, 2289, 2388, 11, 5, 132, 12, 32673, 2187, 333, 4411, 5656, 4, 6361, 4, 134, 207, 9, 132, 12, 32673, 9352, 1118, 19, 3330, 4, 406, 207, 9, 5656, 2984, 46422, 134, 1380, 188, 469, 6924, 1544, 3855, 36, 510, 41552, 288, 4, 19089, 322, 970, 58, 8065, 28688, 6315, 12, 3368, 12661, 1061, 19, 5, 132, 12, 32673, 467, 1118, 19, 5, 155, 12, 32673, 467, 36, 288, 207, 4411, 290, 31558, 221, 5214, 288, 4, 3933, 322, 2], [0, 3750, 18043, 6, 1484, 56, 545, 4, 401, 46710, 262, 4, 176, 3708, 36857, 360, 36, 16261, 495, 43, 8, 365, 4, 401, 46710, 262, 4, 288, 13827, 36857, 12, 14175, 8456, 360, 228, 353, 4, 4993, 231, 377, 6, 364, 2558, 783, 873, 1416, 2906, 3928, 7374, 14052, 4500, 36, 725, 2068, 12, 401, 14386, 43, 4391, 30, 262, 4, 406, 50141, 290, 4, 306, 36, 642, 41552, 288, 4, 19089, 238, 5, 10639, 22709, 23535, 33599, 22261, 36, 119, 448, 2688, 2336, 43, 30, 501, 4, 134, 46710, 601, 4, 398, 36, 642, 41552, 288, 4, 19089, 238, 256, 12550, 30, 262, 4, 401, 46710, 262, 4, 288, 36, 642, 41552, 288, 4, 19089, 43, 8, 13827, 36857, 12, 14175, 8456, 360, 228, 353, 30, 231, 4, 401, 50141, 195, 4, 306, 36, 642, 41552, 288, 4, 19089, 322, 717, 2558, 783, 873, 67, 2906, 5, 913, 9, 36857, 15, 592, 8, 284, 301, 6, 25, 24864, 30, 10, 4878, 9, 14052, 9, 22709, 23535, 15, 4598, 8, 1614, 43979, 4278, 36, 3755, 35765, 43, 4391, 30, 231, 4, 134, 46710, 231, 4, 406, 36, 642, 41552, 288, 4, 19089, 322, 18276, 20676, 431, 10, 1266, 12833, 9, 5545, 4, 134, 6, 9742, 9, 7383, 4, 306, 8, 720, 11658, 9, 4801, 4, 306, 11, 5, 19120, 41802, 10845, 15680, 45349, 13, 5066, 14086, 36, 2685, 1864, 448, 12, 466, 322, 1121, 746, 6, 6705, 12661, 1061, 36, 16329, 43, 8, 316, 1473, 12661, 1061, 36, 3603, 717, 43, 58, 6373, 11, 5356, 8, 365, 1484, 4067, 4, 1121, 1285, 6, 5, 431, 913, 9, 36857, 15, 23161, 8, 408, 9, 1484, 21, 2906, 4, 2], [0, 41981, 230, 5683, 22081, 15, 1164, 2400, 15608, 21, 823, 11640, 148, 44, 48, 32794, 17, 46, 49319, 17, 23171, 134, 4, 176, 46710, 195, 4, 401, 207, 11778, 20825, 238, 53, 1130, 3625, 7, 545, 4, 246, 46710, 155, 4, 306, 207, 44944, 148, 44, 48, 2191, 17, 46, 36, 642, 17, 23171, 5214, 17, 23171, 288, 4, 3933, 322, 5771, 144, 44, 48, 42653, 17, 46, 295, 1975, 2463, 46209, 1209, 4014, 17294, 6, 4625, 30, 12418, 73, 12968, 10417, 2400, 37817, 6, 22495, 129, 650, 3038, 9, 4998, 104, 36, 642, 17, 23171, 15698, 17, 23171, 288, 4, 2546, 238, 5, 2508, 12, 658, 1750, 21, 5025, 2906, 7, 624, 5, 2340, 1186, 148, 44, 48, 2191, 17, 46, 36, 642, 17, 23171, 5214, 17, 23171, 288, 4, 3387, 131, 4920, 17, 27, 29, 385, 17, 23171, 5214, 17, 23171, 134, 4, 288, 322, 47515, 12418, 70, 9956, 17493, 21, 33110, 11, 411, 9, 707, 1484, 4, 2], [0, 23565, 219, 12, 17723, 1484, 6, 1510, 4, 176, 207, 390, 6, 6657, 4, 246, 2744, 306, 4, 306, 107, 793, 6, 19, 226, 8856, 597, 9, 5169, 2744, 306, 4, 306, 4234, 5549, 4, 398, 207, 19, 30960, 6, 4059, 4, 398, 207, 19, 23, 13700, 856, 11804, 34775, 6, 843, 4, 306, 207, 19, 7704, 6, 1105, 4, 466, 207, 19, 23, 513, 112, 40519, 1098, 1938, 11, 5, 2052, 76, 6, 5659, 4, 406, 207, 5300, 6826, 4210, 6395, 6, 8, 229, 3376, 1864, 1374, 1471, 2929, 4, 466, 2744, 2146, 4, 406, 58, 12751, 4, 133, 2270, 22081, 34533, 6, 1266, 464, 11, 5, 3110, 412, 5866, 118, 13604, 31395, 15680, 45349, 36, 530, 3376, 1864, 43, 1374, 1471, 6, 2782, 30, 504, 4, 288, 46710, 545, 4, 401, 332, 36, 642, 41552, 288, 4, 19089, 43, 8, 89, 21, 41, 515, 12, 3743, 731, 9, 8060, 4, 401, 207, 13, 5, 2270, 1078, 34533, 6, 2187, 12, 8, 7089, 12, 3368, 12385, 6, 25, 25536, 5554, 30, 41, 2222, 11593, 25536, 14086, 1540, 4, 2], [0, 41981, 35, 1525, 5, 195, 4015, 1484, 6, 5356, 43413, 288, 207, 36, 282, 5457, 41821, 43, 56, 112, 6, 132, 50, 155, 12, 9190, 2199, 2006, 30, 35462, 5667, 118, 10486, 4, 6842, 534, 2006, 10, 26853, 23, 1079, 19, 10, 15608, 9, 1814, 43413, 176, 46710, 204, 43413, 176, 207, 13, 2182, 1484, 36, 31336, 35, 8783, 43413, 176, 46710, 155, 43413, 134, 20186, 42561, 9, 6657, 43413, 306, 46710, 361, 43413, 398, 207, 36, 31336, 35, 5553, 43413, 134, 46710, 290, 43413, 245, 20186, 8, 1374, 8611, 9, 7383, 43413, 245, 46710, 231, 43413, 306, 207, 36, 31336, 35, 1814, 43413, 406, 46710, 155, 43413, 246, 23528, 2], [0, 10197, 2], [0, 37703, 12, 22255, 211, 3808, 29, 19, 239, 476, 9, 6886, 8, 205, 819, 58, 2006, 6, 29854, 8, 12684, 29548, 4, 170, 4776, 5, 3862, 2885, 8446, 4113, 15, 33777, 3186, 7931, 14, 58, 11, 12980, 67, 9550, 30, 20857, 45156, 8, 303, 4206, 22792, 4, 2], [0, 133, 2621, 9, 5204, 12, 4897, 2084, 1279, 1417, 853, 2906, 8512, 42194, 443, 223, 5, 29051, 11772, 12, 958, 9158, 31, 942, 454, 94, 24934, 21584, 20104, 30, 316, 207, 8, 4532, 29051, 11772, 30, 820, 207, 1118, 19, 8512, 42194, 1937, 2], [0, 170, 8085, 37836, 37029, 163, 5268, 29, 19, 81, 28577, 13135, 19180, 6, 61, 16, 2219, 80, 3365, 9, 11259, 2514, 87, 167, 9, 656, 37029, 163, 5268, 29, 6, 30, 9405, 10, 7884, 352, 18482, 927, 27405, 8385, 196, 5991, 487, 428, 673, 246, 4605, 43415, 18482, 2630, 624, 10, 208, 11244, 1043, 14018, 4, 133, 163, 5268, 29, 32, 7646, 30, 14978, 5, 2660, 45113, 10603, 6, 2116, 12, 7215, 47114, 6, 8, 7241, 1975, 368, 47114, 4, 42850, 6, 5, 37836, 3838, 1097, 13767, 23, 4915, 1134, 9, 13135, 19180, 16, 13031, 30, 17997, 194, 23681, 10486, 6, 147, 349, 41128, 16, 81, 321, 4, 406, 4, 2], [0, 4528, 8369, 12246, 2782, 7224, 510, 931, 6, 3970, 27354, 4, 401, 121, 226, 47677, 134, 19, 41, 7224, 510, 3363, 45979, 854, 642, 73, 1178, 9, 564, 4, 176, 8, 10, 2167, 434, 731, 36, 4056, 8906, 43, 9, 321, 4, 3570, 1368, 47677, 134, 4, 133, 10340, 7300, 6, 5991, 6, 8, 7639, 58, 5, 144, 14146, 703, 31, 34389, 148, 5, 9281, 1792, 718, 1938, 609, 30, 163, 4, 13460, 4977, 4132, 4, 133, 144, 22349, 6523, 10395, 2622, 149, 5, 23467, 609, 21, 784, 28201, 10395, 6, 1432, 30, 23457, 21515, 10395, 8, 13575, 32027, 5720, 6527, 636, 10395, 16, 11032, 4, 2], [0, 10643, 35058, 23496, 32833, 6, 365, 36, 176, 4, 398, 8871, 58, 1313, 30, 45453, 40867, 16572, 6, 19446, 36, 2983, 4, 398, 8871, 30, 1577, 11497, 6, 22619, 36, 2022, 4, 134, 8871, 30, 2040, 6, 8, 33945, 43671, 4383, 21, 4292, 19, 19009, 11, 26703, 36, 4540, 4, 246, 23528, 41622, 40865, 6, 226, 16966, 387, 21, 6443, 11, 27012, 8, 39797, 118, 30570, 1474, 19009, 11, 29065, 1200, 4, 41634, 2040, 6, 33945, 43671, 4383, 4411, 1577, 11497, 56, 723, 15608, 36, 6478, 1954, 4, 5356, 8871, 53, 795, 42561, 36, 4671, 1954, 4, 8101, 23528, 1121, 1484, 19, 765, 5154, 750, 6, 10, 3625, 723, 346, 9, 1577, 11497, 12, 22173, 36366, 58, 2040, 12, 22173, 4, 36342, 1484, 19, 33945, 4383, 38907, 9, 19009, 6, 117, 2249, 21, 450, 11, 1263, 7, 1416, 227, 39797, 17129, 1313, 8, 2430, 6, 53, 10, 1233, 2635, 1263, 21, 1581, 11, 39797, 17129, 1474, 19009, 19, 43423, 2379, 45404, 33945, 4383, 4, 2], [0, 170, 266, 6, 7, 84, 275, 2655, 6, 13, 5, 78, 86, 14, 8065, 39475, 39797, 118, 6673, 1580, 38857, 3059, 19, 5, 5154, 23808, 9, 30283, 35157, 11, 1668, 1484, 4, 36342, 5, 7696, 3365, 6, 5, 230, 5247, 1417, 853, 4575, 645, 6, 13953, 453, 9, 5, 208, 28778, 1417, 853, 46780, 1232, 6, 58, 3625, 795, 22349, 11, 5, 30283, 35157, 26268, 4, 7199, 4735, 6, 881, 12, 6031, 13833, 5708, 39797, 118, 6673, 3443, 6, 2260, 14096, 5, 96, 1417, 853, 46780, 8, 10719, 28641, 46780, 1232, 6, 969, 67, 2906, 18225, 11, 5, 30283, 35157, 333, 4, 347, 5247, 1417, 853, 4575, 8, 208, 28778, 1417, 853, 46780, 4707, 6, 58, 299, 4173, 1380, 27368, 9, 3563, 2239, 8369, 7, 12461, 22929, 227, 30283, 20069, 8, 786, 12, 47974, 20069, 1484, 36, 250, 12945, 321, 4, 406, 1360, 322, 35490, 88, 1316, 25465, 1198, 12, 37558, 9, 291, 30283, 20069, 36, 1244, 4, 401, 8871, 8, 158, 786, 12, 47974, 20069, 1484, 36, 1922, 4, 398, 8871, 190, 2782, 11382, 9, 209, 4139, 36, 642, 28696, 288, 4, 2663, 6, 83, 12945, 321, 4, 39134, 322, 2], [0, 10197, 2], [0, 133, 775, 969, 14, 5, 22784, 4359, 16, 5, 538, 4359, 1455, 11, 5, 25, 12, 3340, 17366, 289, 846, 21600, 25648, 14, 21, 15702, 44937, 3032, 23, 21083, 33397, 347, 4, 31959, 9540, 1033, 9, 5, 276, 15229, 12925, 250, 33057, 969, 10, 80, 12, 35483, 3184, 17402, 9, 5, 226, 1092, 8, 22784, 73, 387, 176, 17369, 4, 133, 775, 969, 3425, 45187, 11, 5, 12925, 250, 2175, 29582, 148, 5, 239, 12, 17950, 43432, 45187, 4895, 6, 53, 117, 1233, 25648, 2988, 71, 727, 17210, 16726, 23, 365, 1096, 33397, 347, 4, 2], [0, 2522, 4139, 3608, 14, 3779, 1974, 237, 538, 4502, 11, 21368, 1414, 35, 25, 10, 30893, 2630, 6, 442, 5, 1414, 9, 386, 12, 4489, 3013, 131, 25, 10, 18422, 2630, 13, 92, 16186, 108, 1414, 131, 25, 41, 4258, 9, 21368, 1414, 131, 8, 25, 10, 43641, 1571, 6, 1959, 5, 265, 1421, 1495, 4, 574, 6294, 6257, 209, 4502, 9, 3779, 6, 52, 2179, 10, 278, 9, 26613, 7, 699, 62, 8515, 10389, 3817, 3779, 12, 38838, 92, 16186, 215, 25, 1778, 386, 12, 4489, 8, 1778, 265, 3092, 4, 2], [0, 41981, 35, 20, 4069, 9, 14850, 534, 8, 10018, 17294, 36, 9502, 5402, 7681, 4985, 134, 43, 34852, 3625, 19, 3186, 18, 1881, 25, 24934, 3786, 30, 5, 4243, 1471, 9, 19991, 18475, 18, 11817, 8998, 33256, 8, 24, 1714, 3625, 19, 385, 495, 3297, 2851, 42189, 7059, 11, 516, 19, 8065, 11707, 5298, 4, 45015, 154, 414, 12333, 11, 6676, 19, 5, 184, 2269, 5119, 35, 8301, 7606, 10146, 3109, 2389, 19, 6110, 15188, 6, 5553, 7606, 19, 10727, 35714, 6, 8, 6657, 7606, 19, 25599, 330, 3141, 493, 4, 1121, 5, 211, 3297, 333, 6, 5, 3874, 12, 658, 86, 19, 27034, 41213, 1075, 687, 32188, 5043, 21, 2906, 19, 2851, 42189, 7059, 11, 70, 4682, 65, 3186, 716, 15, 19851, 4, 2], [0, 133, 775, 7646, 42561, 9, 33861, 2239, 7, 5, 3656, 6918, 571, 12, 717, 9763, 6029, 6, 61, 669, 7, 2906, 10, 14726, 3432, 8307, 493, 8, 3845, 3722, 21537, 1517, 6, 9172, 357, 3992, 24657, 511, 6918, 571, 12, 717, 9763, 12, 25356, 5407, 7, 5656, 4, 14563, 9799, 1002, 4921, 21, 7646, 11, 10, 1407, 12, 658, 856, 44903, 12, 25356, 6, 2018, 2388, 46465, 1925, 12, 25456, 4138, 12, 4483, 12, 30231, 159, 40757, 8, 46465, 2383, 9399, 5638, 196, 2617, 46695, 40715, 12628, 10335, 511, 6918, 571, 12, 717, 9763, 12, 25356, 5407, 7, 440, 25356, 4, 2], [0, 41981, 50141, 2548, 9, 361, 32088, 2189, 6, 7994, 6665, 58, 1165, 11, 5, 1551, 6, 6846, 13, 112, 4, 4390, 153, 3597, 6, 8940, 207, 9, 2661, 829, 163, 16966, 29899, 428, 176, 50, 732, 9167, 40295, 134, 4, 28873, 7374, 21, 3489, 5, 371, 144, 1537, 35722, 35, 24, 21, 12333, 11, 820, 207, 36, 4015, 207, 19104, 504, 2383, 2518, 8871, 9, 9352, 71, 5, 78, 12234, 9, 9937, 8, 11, 1132, 207, 36, 4015, 207, 19104, 883, 2383, 2022, 8871, 71, 5, 200, 6, 19, 41, 5004, 47788, 4, 11195, 2806, 26231, 431, 19344, 11, 158, 2383, 1092, 207, 9, 1200, 4, 3084, 5550, 58, 12333, 420, 430, 16968, 50, 30, 47412, 12, 805, 1954, 4, 44, 48, 30172, 17, 46, 1980, 4, 29802, 9, 5, 3218, 431, 335, 15, 19344, 1575, 4, 250, 795, 21087, 9, 19344, 71, 5, 78, 12632, 9, 163, 16966, 29899, 428, 176, 566, 2530, 3597, 21, 2343, 4, 133, 1647, 9, 1484, 341, 103, 8456, 7, 3951, 19344, 6, 5, 65, 9568, 25, 5, 144, 2375, 145, 37662, 4360, 26641, 24363, 5895, 10395, 4, 2], [0, 11773, 6, 52, 311, 14, 31559, 44783, 6374, 11, 6907, 134, 46068, 22284, 8136, 1173, 3247, 8, 8085, 14, 23785, 22436, 4685, 1046, 12, 30231, 39475, 26971, 11, 6907, 134, 12, 26121, 927, 16016, 4, 170, 303, 14, 8136, 1173, 22436, 16, 14150, 18561, 9, 10, 19165, 42040, 30, 44193, 366, 12589, 5708, 4, 133, 7601, 311, 14, 6907, 134, 12, 26121, 927, 16016, 2332, 39475, 26971, 8, 14, 25276, 9, 8136, 1173, 6, 41, 36154, 9161, 1263, 18422, 2630, 6, 11, 5, 8731, 13210, 3663, 43261, 26971, 8, 3551, 744, 11, 5, 2900, 4, 2], [0, 347, 37347, 8457, 9, 17374, 495, 189, 680, 22845, 21747, 6, 592, 6882, 6, 6711, 14389, 6, 27942, 6, 3581, 1272, 6, 19184, 1272, 6, 6943, 6, 614, 1403, 12, 29704, 6, 8, 1130, 1476, 4, 2], [0, 41981, 50141, 23052, 3320, 1075, 17866, 4391, 58, 723, 566, 786, 12, 44272, 735, 8, 14362, 1484, 6, 9641, 4391, 58, 795, 11, 1378, 8, 3102, 73, 8145, 2376, 254, 1484, 4, 1121, 5, 1374, 26268, 6, 5, 144, 1537, 1736, 5298, 1165, 2157, 7428, 73, 462, 2990, 9, 1007, 36, 5339, 4, 246, 20186, 3841, 3024, 36, 5606, 4, 245, 20186, 3605, 3064, 15028, 36, 3305, 4, 246, 20186, 8698, 3977, 9782, 36, 3714, 4, 401, 20186, 8, 35188, 36, 3714, 4, 401, 20186, 19, 1122, 8117, 6373, 420, 6689, 73, 38211, 1134, 4, 133, 144, 18689, 28667, 28255, 1165, 2157, 7428, 73, 462, 2990, 9, 1007, 17, 23171, 2744, 17, 23171, 90, 8508, 5225, 3064, 15028, 36, 3272, 4, 406, 45973, 3605, 3064, 15028, 17, 23171, 2744, 17, 23171, 90, 8508, 5225, 4959, 15028, 36, 3079, 4, 306, 45973, 8, 2157, 7428, 73, 462, 2990, 9, 1007, 17, 23171, 2744, 17, 23171, 90, 8508, 5225, 4959, 15028, 36, 2881, 4, 288, 23528, 44620, 23385, 43202, 6, 6440, 2326, 6, 8, 11481, 26499, 27438, 5073, 34852, 19, 723, 1736, 8, 1374, 28667, 17866, 4391, 4, 2], [0, 41981, 35, 4934, 7673, 237, 6317, 33910, 12, 13664, 1484, 58, 12751, 309, 7, 5, 8608, 4, 133, 195, 12, 180, 8192, 8, 211, 7881, 11, 5, 208, 3376, 333, 36, 282, 5457, 195, 32306, 43, 58, 723, 87, 167, 11, 5, 7224, 73, 40230, 333, 36, 282, 5457, 21891, 322, 4993, 4868, 448, 36, 134, 35, 306, 238, 5, 195, 12, 180, 8192, 8, 211, 7881, 11, 5, 208, 3376, 333, 58, 723, 87, 167, 11, 5, 7224, 73, 40230, 333, 36, 4956, 4, 176, 207, 1954, 4772, 4, 466, 4234, 181, 28696, 321, 4, 19089, 6, 11683, 5457, 112, 4, 398, 4015, 131, 5545, 4, 401, 207, 1954, 4034, 4, 398, 4234, 181, 28696, 321, 4, 19089, 6, 11683, 5457, 132, 4, 2546, 401, 322, 1121, 1289, 38, 12, 100, 2889, 176, 1484, 6, 71, 4868, 448, 36, 134, 35, 306, 238, 89, 21, 117, 1233, 2249, 11, 195, 12, 180, 8192, 227, 5, 208, 3376, 333, 36, 282, 5457, 22726, 43, 8, 5, 7224, 73, 40230, 333, 36, 282, 5457, 2631, 43, 36, 4671, 4, 245, 207, 1954, 5545, 4, 398, 4234, 221, 5457, 321, 4, 16925, 322, 10462, 6, 5, 195, 12, 180, 211, 7881, 11, 5, 208, 3376, 333, 21, 723, 87, 14, 11, 5, 7224, 73, 40230, 333, 36, 5339, 4, 288, 207, 1954, 3490, 4, 406, 4234, 221, 5457, 321, 4, 39664, 131, 11683, 5457, 132, 4, 288, 3272, 6, 221, 5457, 321, 4, 40958, 322, 1121, 1289, 3082, 387, 12, 6372, 1484, 6, 71, 4868, 448, 36, 134, 35, 306, 238, 5, 195, 12, 180, 8192, 8, 211, 7881, 11, 5, 208, 3376, 333, 36, 282, 5457, 231, 3248, 43, 58, 723, 87, 167, 11, 5, 7224, 73, 40230, 333, 36, 282, 5457, 30011, 43, 36, 3083, 4, 406, 207, 1954, 4431, 4, 246, 207, 221, 28696, 321, 4, 19089, 1954, 112, 4, 36509, 4234, 221, 28696, 321, 4, 19089, 1954, 2248, 4, 398, 4234, 181, 28696, 321, 4, 19089, 322, 2], [0, 41981, 50141, 23227, 19625, 2400, 24934, 3786, 30, 10, 46325, 691, 3189, 36, 134, 2383, 698, 43, 11, 5, 2849, 4783, 1116, 281, 15585, 12632, 333, 21, 3625, 795, 87, 14, 11, 5, 797, 333, 4, 133, 1280, 9, 16938, 304, 21, 3625, 540, 11, 5, 2849, 4783, 1116, 281, 15585, 12632, 333, 23, 706, 17, 23171, 298, 6, 2929, 17, 23171, 298, 6, 8, 70, 7757, 5788, 71, 3012, 4, 1121, 1285, 6, 16107, 16505, 3421, 36, 771, 13963, 43, 6533, 25, 5, 346, 9, 360, 454, 5, 78, 515, 9, 13569, 11264, 21, 3625, 540, 11, 5, 2849, 4783, 1116, 281, 15585, 12632, 333, 36, 246, 4, 246, 385, 1954, 204, 4, 134, 385, 6, 221, 17, 23171, 5214, 17, 23171, 288, 4, 151, 406, 46904, 574, 3631, 3693, 304, 21, 3625, 540, 11, 5, 2849, 4783, 1116, 281, 15585, 12632, 333, 36, 288, 4, 246, 498, 1954, 112, 4, 246, 498, 6, 221, 17, 23171, 5214, 17, 23171, 288, 4, 4197, 322, 2], [0, 41981, 20, 8329, 3113, 2408, 8, 18371, 5033, 1046, 58, 379, 6405, 45009, 32913, 821, 8, 1105, 4, 466, 45009, 176, 4, 246, 885, 330, 6, 379, 5607, 45009, 29969, 821, 8, 1105, 4, 401, 45009, 176, 4, 246, 885, 330, 4067, 13, 1198, 1279, 19964, 11, 5, 3539, 681, 333, 8, 9092, 681, 333, 4, 4993, 204, 7, 231, 688, 9, 1098, 1938, 6, 566, 70, 5, 1198, 1279, 19964, 6, 3135, 2226, 248, 5733, 36, 1250, 5612, 43, 9172, 41, 24971, 9, 248, 5733, 23, 4893, 4, 3897, 2153, 13863, 5, 24971, 9, 248, 5733, 19, 143, 5612, 969, 117, 5550, 227, 5, 80, 1134, 6, 5, 3814, 248, 5733, 24971, 11, 5, 333, 19, 3539, 681, 2841, 11418, 2485, 36, 176, 4, 3103, 8871, 21, 3625, 795, 87, 14, 11, 5, 333, 19, 9092, 681, 2841, 11418, 2485, 36, 1922, 4, 6468, 8871, 36, 510, 41552, 288, 4, 2546, 322, 4993, 501, 360, 9, 10894, 323, 6, 5, 1198, 1279, 19964, 16556, 3539, 681, 2841, 11418, 2485, 56, 41, 712, 11, 1437, 4270, 26636, 4469, 859, 211, 6826, 1383, 6, 19, 10, 4878, 11, 1750, 9, 4709, 1488, 808, 10003, 10395, 36, 5596, 43, 7, 211, 6826, 8, 41, 712, 9, 295, 12, 246, 1965, 4, 2], [0, 41981, 50141, 83, 746, 9, 29189, 7201, 19057, 971, 3218, 4973, 13, 9290, 19, 158, 3218, 341, 13, 32820, 12, 31116, 4, 713, 892, 303, 10, 27697, 1233, 2249, 11, 32586, 565, 6, 19131, 15644, 6, 7725, 7910, 6, 228, 1588, 28050, 18667, 22259, 6, 8, 18939, 4, 22412, 6, 89, 21, 117, 1233, 2249, 11, 30835, 4391, 227, 208, 3850, 1484, 8, 786, 12, 104, 3850, 1484, 71, 8640, 250, 4, 2], [0, 41981, 50141, 166, 33, 3744, 14499, 32634, 15, 10088, 7814, 4399, 1535, 31, 3490, 6994, 8571, 131, 23703, 7814, 4399, 1535, 13, 6212, 12, 27534, 129, 6, 3337, 13, 6212, 12, 27534, 8, 289, 8272, 29691, 6, 5553, 13, 6212, 12, 27534, 11, 4069, 19, 2099, 4230, 6, 8, 4981, 13, 6212, 12, 27534, 8, 41, 25171, 2911, 12572, 219, 7231, 4, 6115, 7814, 4399, 1535, 58, 2937, 868, 6, 379, 28303, 58, 1102, 6, 8, 365, 7272, 2421, 4, 2], [0, 10197, 2], [0, 41981, 35, 13620, 1389, 9, 746, 8, 289, 19454, 46468, 261, 9041, 179, 11, 29051, 58, 303, 11, 1484, 19, 14637, 495, 1118, 19, 1389, 11, 5656, 4, 250, 1233, 42075, 22792, 21, 6373, 227, 809, 2862, 1965, 8, 29051, 1389, 9, 746, 8, 289, 19454, 46468, 261, 9041, 179, 11, 5, 797, 333, 4, 10462, 6, 42, 1233, 22792, 21, 45, 6373, 11, 1484, 19, 14637, 495, 4, 133, 29051, 1389, 9, 746, 8, 289, 19454, 46468, 261, 9041, 179, 58, 67, 45, 3625, 34852, 19, 143, 34049, 5043, 17294, 11, 1484, 19, 14637, 495, 4, 44401, 5, 194, 9, 19729, 13075, 8475, 6, 5, 29051, 1389, 9, 746, 46468, 261, 9041, 179, 58, 11, 37794, 34852, 19, 5, 11270, 771, 73, 2371, 771, 1750, 8, 13541, 19, 8242, 771, 3266, 11, 1484, 19, 14637, 495, 4, 42850, 6, 2789, 43879, 58, 303, 227, 209, 17294, 8, 29051, 289, 19454, 46468, 261, 9041, 179, 1389, 4, 2], [0, 3750, 112, 76, 6, 188, 469, 6924, 1544, 1380, 2194, 21, 4925, 36, 3818, 8871, 50, 2782, 36, 3761, 8871, 11, 144, 1484, 6, 1266, 229, 3376, 1864, 4391, 1130, 31, 18043, 30, 158, 2833, 646, 4015, 207, 2123, 22455, 36, 21701, 43, 155, 7, 1360, 131, 221, 28696, 321, 4, 2663, 742, 8, 1266, 231, 12, 4691, 1656, 1296, 4472, 1130, 30, 2631, 475, 36, 4015, 207, 19104, 316, 7, 4981, 131, 221, 28696, 321, 4, 2663, 322, 15153, 500, 4978, 2782, 11, 564, 207, 9, 1484, 8, 21, 4925, 11, 4893, 207, 9, 1484, 19, 1022, 11, 1266, 6701, 7150, 41448, 3149, 9, 111, 406, 38762, 36, 4015, 207, 19104, 111, 1225, 7, 111, 246, 131, 221, 28696, 321, 4, 19089, 238, 748, 4242, 1355, 102, 111, 288, 4, 1225, 25434, 36, 4015, 207, 19104, 111, 288, 4, 844, 7, 111, 288, 4, 4197, 131, 221, 28696, 321, 4, 2546, 238, 8, 2375, 6701, 7150, 41448, 50, 39748, 443, 111, 288, 4, 3933, 25434, 176, 36, 4015, 207, 19104, 111, 288, 4, 4124, 7, 111, 288, 4, 2663, 131, 221, 28696, 321, 4, 2546, 322, 970, 58, 786, 12, 18880, 5139, 11, 38669, 29277, 1499, 13484, 8, 7267, 4, 39644, 11221, 81, 112, 76, 21, 8572, 207, 19, 117, 2249, 227, 10439, 36, 5607, 8871, 8, 7212, 36, 5334, 8871, 7346, 500, 36, 12376, 12, 40081, 221, 5457, 321, 4, 2036, 322, 10653, 42223, 12, 3743, 7967, 21, 1510, 207, 36, 6551, 207, 11, 10439, 1954, 4, 5549, 207, 11, 7212, 7346, 500, 131, 221, 5457, 321, 4, 1549, 322, 38647, 31, 40519, 1098, 1938, 21, 6521, 207, 36, 5677, 207, 11, 10439, 7346, 500, 1954, 4, 5138, 207, 11, 7212, 7346, 500, 131, 221, 5457, 321, 4, 3570, 322, 2], [0, 10197, 2], [0, 1121, 746, 6, 508, 4540, 29545, 58, 1165, 11, 5, 1966, 4, 41981, 50141, 23945, 12, 13664, 477, 292, 135, 9, 5, 29545, 431, 8416, 55, 87, 290, 17, 23171, 298, 23, 363, 4, 11195, 54, 431, 12714, 4850, 23, 143, 13135, 56, 3625, 10941, 3581, 13428, 87, 167, 54, 222, 45, 4, 4148, 674, 6, 239, 2360, 9, 12714, 36, 27900, 12714, 17, 23171, 48054, 8210, 17, 23171, 306, 498, 10, 186, 43, 56, 321, 4, 4015, 36, 4015, 207, 19104, 35, 321, 4, 5606, 6, 112, 4, 2517, 43, 722, 36, 118, 4, 242, 482, 4981, 17, 23171, 4691, 43, 540, 3581, 87, 167, 54, 393, 13056, 12714, 4, 1121, 1285, 6, 239, 2360, 56, 55, 87, 564, 17, 23171, 4691, 36, 4015, 207, 19104, 35, 508, 4, 4015, 6, 2491, 4, 6617, 43, 1181, 1481, 4467, 4717, 675, 87, 167, 54, 393, 13056, 12714, 4, 170, 303, 10, 12234, 12, 41510, 1291, 227, 13135, 9, 12714, 4850, 8, 2906, 3581, 4, 2], [0, 250, 746, 9, 545, 6551, 6, 29670, 6, 8, 39898, 430, 11416, 2327, 14819, 58, 4756, 11, 221, 7111, 134, 73, 1092, 6, 221, 7111, 134, 6, 8, 221, 7111, 1570, 6, 4067, 6, 8, 49, 37015, 21, 614, 4, 40790, 179, 34609, 2857, 1966, 1474, 14, 221, 7111, 134, 73, 1092, 6, 221, 7111, 134, 6, 8, 221, 7111, 1570, 22495, 430, 12243, 5588, 8, 22436, 25019, 4, 31288, 43442, 1258, 6, 46099, 1880, 6, 47854, 13310, 6, 8, 16000, 12, 3368, 22436, 25019, 58, 33389, 15, 221, 7111, 134, 73, 1092, 4, 31288, 43442, 1258, 6, 28033, 1638, 833, 1940, 6, 8, 18561, 22436, 13588, 30, 1759, 33824, 45837, 3141, 6, 215, 25, 5, 14077, 3411, 22436, 19165, 6, 58, 33389, 15, 221, 7111, 134, 6, 150, 159, 40757, 9, 31973, 4238, 1940, 6, 43261, 1880, 6, 253, 30321, 90, 13310, 6, 36890, 530, 8, 44978, 34121, 22436, 25019, 2226, 15, 221, 7111, 1570, 4, 2], [0, 41981, 35, 365, 207, 9, 5, 1484, 222, 33, 10, 226, 8856, 597, 46422, 2983, 2153, 5096, 260, 226, 8856, 597, 46710, 12723, 13, 258, 1134, 58, 733, 4, 5208, 46710, 195, 4, 306, 4411, 1718, 4, 176, 46710, 155, 4, 406, 4234, 4067, 4, 10537, 26369, 597, 1864, 36, 3706, 46710, 733, 4, 176, 1954, 4, 3330, 45009, 2146, 4, 306, 43, 8, 1266, 4996, 11747, 4850, 36, 32956, 176, 6, 508, 4, 401, 46710, 204, 4, 134, 1954, 4, 316, 4, 406, 46710, 132, 4, 398, 36769, 73, 9043, 73, 4691, 43, 58, 10451, 227, 258, 1134, 4, 574, 8856, 597, 12, 13839, 154, 222, 45, 2712, 7967, 4, 44620, 18043, 226, 8856, 597, 4596, 11, 3625, 357, 2752, 9, 364, 611, 1975, 11147, 25510, 17294, 215, 25, 226, 8856, 597, 8, 255, 591, 3388, 4, 34547, 45160, 31, 18043, 226, 8856, 597, 6, 258, 1134, 969, 823, 10451, 5139, 13, 5154, 17294, 101, 5300, 6826, 12, 4684, 8, 10725, 26369, 597, 1864, 4, 2], [0, 32884, 636, 1873, 4031, 20897, 58, 2006, 25, 11441, 7, 411, 9042, 8, 316, 684, 4707, 4, 1121, 1285, 6, 237, 6208, 6695, 4031, 32922, 1626, 58, 2006, 25, 6208, 6695, 4031, 2642, 8, 83, 4, 1690, 11180, 368, 17334, 2292, 4, 2], [0, 565, 8332, 104, 11356, 366, 9898, 56, 10, 33100, 1836, 9, 10529, 17, 23171, 45009, 17, 23171, 401, 4, 406, 44834, 6, 3838, 8645, 1757, 5838, 9, 7953, 4, 401, 17, 23171, 45009, 17, 23171, 306, 4, 134, 207, 8, 992, 8152, 801, 9, 17, 23171, 2744, 17, 23171, 3761, 17, 23171, 45009, 17, 23171, 176, 4, 398, 475, 846, 4, 1000, 12, 5022, 25871, 22870, 1966, 1487, 5, 1262, 21, 8417, 7, 8531, 524, 31724, 1827, 194, 6, 150, 9235, 35235, 32518, 3156, 969, 5, 44787, 3989, 19, 255, 8332, 104, 15, 5, 4084, 9, 11356, 366, 9898, 4, 133, 32018, 969, 19664, 21777, 24438, 32148, 19, 5232, 1262, 800, 9, 8403, 207, 11, 2491, 1368, 4, 34399, 33646, 9, 230, 12, 401, 12, 31479, 16349, 11356, 366, 9898, 21, 6373, 11, 83, 12, 36476, 4590, 8, 44193, 1242, 46513, 3044, 1487, 14, 11356, 366, 9898, 58, 55, 2375, 87, 22472, 32018, 4, 133, 7094, 21, 303, 4375, 11, 5443, 8421, 8, 27361, 26572, 4, 574, 1588, 366, 38868, 11651, 10709, 39798, 21, 17, 23171, 34437, 17, 23171, 401, 4, 1922, 498, 2388, 11, 14933, 17558, 2383, 495, 1584, 607, 2943, 24162, 1118, 7, 22472, 32018, 6, 309, 7, 11, 43486, 26578, 36557, 15557, 414, 4, 2], [0, 133, 25864, 260, 12589, 14660, 8, 5, 25864, 4360, 37662, 877, 13484, 969, 44193, 1242, 29948, 1940, 136, 19961, 1001, 3662, 13651, 129, 23, 5, 1609, 26069, 36, 5714, 8, 1764, 48577, 73, 18517, 43, 8, 5, 9234, 681, 23, 10, 11772, 9, 1764, 48577, 73, 18517, 4, 133, 4776, 44807, 8531, 4875, 5, 19567, 4450, 45357, 24739, 9, 5, 37004, 6, 77, 5, 1416, 21, 2584, 66, 71, 3551, 7910, 4, 1121, 45529, 4405, 1683, 9, 39944, 30619, 21, 144, 5025, 6373, 11, 5, 1198, 12, 37558, 9, 37891, 137, 3551, 7910, 19, 5, 25864, 260, 12589, 14660, 8, 5, 25864, 4360, 37662, 877, 13484, 6, 2018, 10, 2228, 1683, 15, 5, 37004, 4, 2], [0, 48738, 13, 3868, 43471, 8, 1042, 58, 2260, 4756, 31, 485, 588, 12, 8331, 391, 2238, 414, 4, 41981, 50141, 287, 228, 10, 23805, 9, 10, 1542, 12, 11173, 1966, 6, 17307, 565, 2906, 1042, 30, 68, 401, 3416, 6775, 8, 19057, 321, 4, 18844, 1209, 2118, 975, 29, 228, 3186, 13, 195, 107, 566, 9841, 12, 6006, 846, 1484, 1118, 7, 117, 1416, 4, 42702, 6, 17307, 565, 16, 10, 701, 12, 15999, 1973, 19, 795, 1042, 8, 357, 12833, 87, 117, 1416, 4, 1106, 158, 6, 151, 1484, 829, 17307, 565, 6, 290, 996, 1160, 1200, 9, 45441, 3938, 7841, 8244, 30708, 4982, 36, 725, 3376, 43, 8, 31956, 22783, 846, 12, 3368, 3257, 115, 28, 25542, 5357, 11, 195, 107, 1118, 7, 117, 1416, 4, 1121, 403, 9, 158, 12, 180, 15306, 6, 17307, 565, 21, 6566, 7353, 4, 1121, 5, 16245, 14148, 5580, 15608, 1966, 19, 5, 10640, 12, 560, 12, 14066, 11543, 6, 5, 18102, 9, 17307, 565, 701, 12, 26715, 12367, 21, 727, 2153, 2], [0, 41981, 50141, 1541, 1966, 924, 41, 712, 346, 9, 12581, 25806, 16849, 1118, 7, 5, 675, 137, 7740, 9, 4307, 31, 4013, 2383, 14517, 36, 306, 4, 4111, 25806, 16849, 73, 1866, 6, 151, 43, 7, 1014, 2383, 14420, 36, 245, 4, 2881, 25806, 16849, 73, 1866, 6, 151, 43, 71, 4307, 7740, 4, 39006, 12, 25350, 24971, 10301, 1130, 30, 501, 207, 36, 3411, 112, 4, 1570, 6164, 19104, 646, 134, 4, 3570, 2383, 134, 4, 2036, 48610, 18285, 11, 12, 40179, 15812, 2442, 4375, 137, 8, 71, 4307, 36, 306, 4, 134, 1954, 155, 4, 406, 20186, 53, 1130, 11, 239, 12, 33313, 3353, 36, 246, 4, 401, 1954, 195, 4, 401, 23528, 133, 346, 9, 4815, 4655, 12581, 25806, 16849, 8065, 71, 5, 7740, 9, 4307, 31, 8162, 7, 3557, 4, 39780, 9, 5, 25806, 16849, 58, 3744, 11, 3353, 3970, 5, 14808, 12944, 1530, 36, 4540, 207, 137, 1954, 2766, 207, 71, 7740, 9, 4307, 322, 4993, 5574, 9, 4307, 6, 1484, 11793, 12581, 3012, 56, 55, 3137, 368, 27607, 2192, 36, 4652, 1954, 8403, 23528, 2], [0, 11773, 6, 52, 431, 14, 5, 34948, 2033, 1475, 12, 700, 11632, 10100, 230, 6793, 1262, 579, 4235, 5234, 28641, 56, 670, 42814, 40079, 1940, 136, 18838, 3603, 6, 19, 10, 3527, 37826, 4405, 11772, 9, 132, 2383, 398, 44200, 571, 73, 43619, 4, 104, 4235, 5234, 28641, 222, 45, 2773, 28944, 11, 42319, 5910, 4, 1121, 1285, 6, 579, 4235, 5234, 28641, 3625, 9464, 208, 4, 10, 2407, 687, 10709, 21928, 9285, 4, 42395, 6, 579, 4235, 5234, 28641, 7899, 1804, 35260, 11, 11, 42319, 8, 11, 43486, 8446, 4113, 4, 42850, 6, 579, 4235, 5234, 28641, 969, 21501, 5580, 38573, 40467, 3038, 136, 258, 1907, 8, 5154, 20897, 9, 208, 4, 10, 2407, 687, 4, 41981, 31, 10, 651, 9, 15491, 6, 217, 34194, 31582, 4484, 40508, 6, 34194, 801, 40508, 6, 19567, 4450, 45357, 22020, 672, 40508, 6, 8, 35235, 32518, 15306, 6, 7646, 14, 5, 814, 9, 579, 4235, 5234, 28641, 189, 28, 30, 24127, 25738, 3551, 42037, 4, 2], [0, 48116, 1938, 3218, 1474, 5, 9285, 9, 5177, 4182, 29492, 4, 133, 2808, 725, 12, 38593, 4186, 2135, 969, 44787, 5177, 4182, 29492, 19, 9094, 32831, 11264, 5838, 43344, 8060, 4, 3933, 46710, 112, 4, 4283, 207, 885, 73, 605, 322, 133, 29854, 2808, 725, 12, 38593, 4186, 2135, 22495, 723, 10709, 12, 625, 44231, 198, 43344, 7694, 4, 4006, 46710, 112, 4, 2983, 23528, 133, 2808, 725, 12, 38593, 4186, 2135, 9094, 5, 34883, 731, 9, 2808, 725, 43344, 4981, 8871, 1118, 7, 8309, 2808, 725, 43344, 4981, 8871, 8, 2808, 725, 12, 3603, 2135, 43344, 7694, 8871, 11, 27361, 26394, 4063, 12293, 36, 104, 27150, 6, 39228, 112, 4, 176, 43, 8, 27361, 39475, 12293, 36, 104, 7025, 6, 39228, 262, 4, 306, 322, 133, 276, 40759, 2782, 5, 31582, 1258, 731, 9, 2808, 725, 43344, 1814, 8871, 1118, 7, 8309, 2808, 725, 43344, 3490, 8871, 8, 2808, 725, 12, 3603, 2135, 43344, 1812, 23528, 133, 11651, 10709, 39798, 775, 4658, 14, 2808, 725, 12, 38593, 4186, 2135, 14137, 4735, 2782, 5, 11651, 10709, 39798, 9, 2808, 725, 1241, 2284, 5, 230, 29459, 6, 255, 29459, 6, 326, 134, 73, 176, 6, 8, 83, 12945, 17294, 1118, 7, 8309, 2808, 725, 4, 2], [0, 347, 41072, 1344, 12, 24919, 295, 4544, 9898, 22495, 10, 13075, 10774, 44080, 26089, 9, 4893, 4, 3818, 44834, 19, 10, 6787, 1836, 3854, 36, 6153, 100, 17, 23171, 5214, 17, 23171, 288, 4, 1558, 43, 8, 992, 8152, 801, 9, 42736, 17, 23171, 2983, 4, 2545, 475, 846, 6, 38907, 13, 9486, 47270, 8, 205, 5443, 4, 487, 4544, 9898, 3838, 763, 5686, 59, 5663, 4, 6551, 207, 9, 740, 877, 16682, 8, 969, 5232, 800, 223, 27361, 31749, 1274, 4, 597, 1438, 8590, 12, 44648, 30175, 19416, 39655, 16572, 8, 755, 12, 15526, 6936, 37314, 34226, 1966, 1474, 1800, 32831, 11264, 9, 740, 41072, 1344, 4, 18348, 46565, 927, 1940, 9, 740, 41072, 1344, 21, 12544, 11, 5, 295, 4544, 38868, 1026, 4, 2], [0, 41981, 35, 32893, 10067, 593, 7, 256, 4054, 139, 969, 10062, 30512, 11, 70, 5, 2900, 6995, 8, 12723, 29, 23808, 148, 5, 78, 290, 722, 4, 31824, 1001, 10067, 444, 31, 5, 256, 4054, 139, 22495, 3169, 872, 9, 1769, 2900, 6995, 8, 8212, 2991, 9, 2635, 6995, 19, 10, 1179, 12723, 24971, 227, 290, 12, 1570, 722, 4, 4993, 290, 722, 6, 5, 20103, 45084, 431, 10, 5929, 4878, 9, 70, 5, 2900, 6995, 4682, 42685, 8, 239, 12723, 24971, 624, 361, 12, 1360, 722, 4, 14229, 5, 12723, 6, 70, 5, 41508, 969, 10, 2991, 11, 70, 2900, 6995, 6, 9641, 6, 5, 2900, 4605, 2752, 21, 15241, 11, 5, 256, 4054, 6237, 71, 5, 12723, 9078, 4, 2], [0, 4993, 10, 1058, 4359, 11, 204, 3122, 6, 411, 15671, 7443, 24238, 8, 292, 13071, 7443, 24238, 3122, 58, 1165, 11, 5, 1966, 4, 41981, 35, 520, 1118, 7, 5, 13071, 7443, 15796, 333, 6, 10, 1233, 32558, 32740, 1683, 9, 15671, 7443, 24238, 15, 5, 13135, 8, 2919, 9, 12723, 29, 21, 12333, 11, 258, 381, 8739, 534, 36, 42258, 7443, 15796, 35, 155, 4, 245, 46710, 132, 4, 134, 12723, 29, 73, 4509, 131, 2919, 9, 6521, 4, 176, 46710, 195, 4, 176, 207, 1954, 4, 15671, 7443, 15796, 35, 112, 4, 288, 46710, 321, 4, 406, 12723, 29, 73, 4509, 131, 2919, 9, 3492, 4, 466, 46710, 733, 4, 398, 8871, 8, 38, 3196, 15308, 36, 42258, 7443, 15796, 35, 155, 4, 466, 46710, 321, 4, 306, 12723, 29, 73, 4509, 131, 2919, 9, 8176, 4, 401, 46710, 316, 4, 288, 207, 1954, 4, 15671, 7443, 15796, 35, 112, 4, 306, 46710, 321, 4, 406, 12723, 29, 73, 4509, 131, 2919, 9, 5545, 4, 406, 46710, 290, 4, 246, 23528, 1121, 1110, 9, 4047, 271, 3894, 3149, 6, 52, 303, 10, 1233, 2249, 227, 5, 13071, 7443, 15796, 36, 466, 4, 288, 46710, 321, 4, 398, 25434, 246, 43, 8, 15671, 7443, 15796, 36, 401, 4, 288, 46710, 112, 4, 288, 25434, 246, 43, 1134, 6, 9172, 10, 4878, 9, 5, 4047, 271, 14970, 11, 5, 3122, 14, 12796, 15671, 7443, 24238, 4, 2], [0, 41981, 12, 83, 746, 9, 501, 1484, 36, 43348, 1046, 654, 4, 306, 107, 6, 262, 16856, 43, 58, 14316, 13, 10, 1266, 13428, 9, 27637, 4, 306, 45009, 2466, 298, 4926, 36, 9435, 35, 8971, 12, 29443, 298, 4926, 238, 148, 61, 381, 8739, 534, 15308, 1487, 10, 746, 346, 9, 23902, 12723, 29, 4, 10643, 209, 6, 18872, 4625, 881, 12723, 29, 8, 1105, 12723, 29, 2633, 11, 28255, 4, 133, 1266, 226, 12, 4454, 1178, 148, 881, 12723, 29, 21, 321, 4, 3546, 8, 1122, 7, 226, 12, 4454, 1178, 148, 797, 5788, 36, 288, 4, 3570, 43, 53, 209, 38320, 3625, 1118, 7, 226, 12, 4454, 1178, 148, 42208, 12723, 29, 36, 288, 4, 1922, 131, 1009, 642, 41552, 288, 4, 19089, 238, 61, 969, 2434, 9, 55, 11166, 15241, 5267, 4, 1121, 1285, 6, 42208, 12723, 5788, 58, 17407, 30, 3488, 11, 38, 7496, 1118, 7, 881, 12723, 8, 797, 5788, 4, 2], [0, 10197, 2], [0, 133, 80, 18291, 129, 10356, 30, 5, 2574, 9, 5, 230, 12, 401, 526, 3206, 6, 1198, 282, 4360, 36, 534, 90, 12, 530, 43, 50, 18250, 48506, 36, 24567, 12, 347, 43, 15, 5, 7843, 10159, 25326, 3964, 179, 1168, 2731, 4, 16991, 18291, 32581, 1888, 1668, 3551, 24739, 11, 42319, 6, 25, 157, 25, 16570, 434, 8, 33076, 17048, 11, 43486, 4, 133, 11693, 9562, 981, 7, 7241, 6673, 31058, 4399, 20477, 11, 4590, 8, 5, 23316, 22481, 3247, 32, 3373, 4, 2], [0, 10197, 2], [0, 1640, 118, 43, 767, 7, 80, 12, 23944, 26354, 2617, 19587, 6, 24, 115, 28, 13773, 14, 19, 5, 712, 9, 17025, 510, 11772, 11, 5, 2849, 35483, 6, 5, 923, 9, 5, 200, 26354, 2617, 45979, 3488, 67, 6, 61, 8711, 14, 17025, 510, 16, 22416, 88, 44278, 34194, 9, 5, 29051, 34194, 1421, 23, 614, 4084, 1164, 8, 14, 5, 10405, 227, 5, 20237, 16, 34999, 2851, 25170, 1370, 6, 8, 36, 4132, 43, 11, 5, 6154, 1168, 24950, 19, 17025, 510, 6, 5203, 11, 41, 2284, 1266, 22481, 443, 8, 6154, 1168, 19777, 5443, 528, 7, 13075, 21130, 30059, 8, 29541, 42653, 11324, 227, 5, 13541, 1340, 17025, 510, 19, 13075, 21130, 30059, 44701, 8, 15708, 1340, 221, 33641, 8, 7974, 44278, 36, 510, 5733, 347, 6, 221, 23075, 322, 2], [0, 10197, 2], [0, 170, 7646, 5, 10295, 26578, 36557, 15557, 3611, 8, 18441, 22081, 9, 5, 5203, 274, 438, 12, 15153, 5949, 81, 5, 7346, 5949, 11, 10, 20501, 1668, 26920, 2154, 13001, 18292, 1421, 4, 2], [0, 1121, 42, 4008, 11857, 34381, 3186, 1956, 6, 1416, 19, 5, 4069, 9, 17491, 448, 1558, 8, 181, 20506, 9396, 1210, 783, 873, 21, 3489, 157, 22639, 6, 19, 1122, 1078, 11729, 1118, 7, 5, 684, 11729, 9, 349, 2936, 1937, 4, 133, 4069, 9, 17491, 448, 1558, 19, 181, 20506, 9396, 1210, 783, 873, 7646, 41, 4554, 1263, 731, 9, 7953, 207, 23, 5, 1609, 1416, 12234, 6, 19, 41, 8101, 207, 1374, 1263, 731, 13, 5, 1374, 1956, 4, 17297, 28281, 36557, 15557, 4990, 9, 17491, 448, 1558, 11, 5, 4069, 2749, 1487, 10, 457, 12, 5367, 9, 62, 7, 291, 4, 401, 722, 4, 2], [0, 1000, 12, 5022, 34774, 25510, 414, 1147, 7, 44961, 32890, 5, 22481, 9562, 13, 248, 3411, 48381, 90, 44944, 19, 42, 651, 4, 2], [0, 15134, 495, 1092, 2036, 21, 1522, 6, 19, 614, 5853, 31688, 9, 1473, 8, 25749, 2922, 12661, 1061, 8, 12661, 1061, 9, 780, 773, 131, 5, 5853, 31688, 58, 1122, 7, 167, 6373, 11, 5, 26231, 333, 4, 104, 33358, 400, 8, 18029, 11012, 58, 3489, 10439, 50, 7212, 11, 258, 1134, 4, 28965, 2319, 9937, 22081, 21, 6657, 4, 288, 207, 36, 4015, 207, 2123, 22455, 646, 21701, 7479, 3620, 4, 246, 7, 1812, 4, 245, 131, 221, 41552, 288, 4, 19089, 43, 8, 2319, 9937, 22081, 21, 8101, 4, 245, 207, 36, 4015, 207, 19104, 6, 4431, 4, 176, 7, 8940, 4, 134, 43, 11, 3597, 3620, 107, 9, 1046, 50, 2530, 4, 18522, 9937, 22081, 21, 4292, 420, 10, 1186, 9, 15343, 2849, 36378, 4, 1121, 5, 1950, 26999, 1966, 2849, 13839, 6, 117, 3814, 50, 2008, 42173, 29177, 19150, 808, 12, 1646, 1200, 58, 6373, 566, 5, 601, 6, 36577, 3597, 11, 5, 17544, 495, 1092, 2036, 333, 131, 290, 1200, 58, 1581, 566, 5, 5663, 1096, 3597, 11, 5, 26231, 333, 48082, 288, 4, 134, 23528, 133, 2319, 9937, 22081, 13, 9107, 208, 22210, 12, 8739, 846, 12, 176, 7910, 36, 282, 40143, 1975, 7527, 808, 34517, 6821, 33955, 21747, 43, 21, 4430, 4, 246, 207, 36, 4015, 207, 19104, 6, 4772, 4, 134, 7, 6121, 4, 288, 131, 221, 41552, 288, 4, 19089, 322, 104, 22210, 12, 8739, 846, 12, 176, 12490, 8276, 17014, 8, 7974, 2787, 32648, 1130, 71, 5, 78, 12234, 8, 1130, 617, 77, 9550, 971, 360, 71, 5, 200, 12234, 4, 35800, 11, 92, 12207, 1592, 2], [0, 41981, 30750, 1389, 9, 30290, 1925, 26071, 36, 22687, 534, 43, 8, 38994, 46440, 1070, 23385, 43202, 36, 725, 428, 250, 134, 347, 43, 969, 10, 4760, 4878, 112, 76, 71, 163, 6153, 6, 3266, 2405, 2829, 1065, 5, 33560, 1186, 1328, 5, 1445, 1407, 12, 658, 4, 565, 176, 25652, 37026, 21, 6373, 11, 59, 654, 207, 9, 5, 1200, 23, 195, 8, 158, 107, 71, 5, 2513, 4, 1121, 545, 1484, 36, 4540, 20186, 3814, 163, 6153, 12, 3368, 12385, 2226, 6, 11, 2724, 1200, 7980, 10, 15535, 18939, 9, 5, 2513, 4, 1121, 5, 163, 6153, 333, 6, 65, 3186, 962, 13, 8196, 35090, 23496, 4982, 8, 80, 1484, 71, 15535, 18939, 4, 35469, 5, 797, 333, 6, 148, 5, 158, 12, 180, 1407, 12, 658, 6, 117, 1022, 11, 5, 33560, 2194, 58, 6373, 6, 145, 5, 13042, 534, 8, 289, 428, 250, 134, 347, 1266, 3266, 723, 87, 167, 2673, 11, 5, 163, 6153, 1484, 23, 143, 1407, 12, 658, 86, 4, 2], [0, 41981, 345, 21, 117, 1233, 2249, 11, 2408, 8, 33860, 71, 155, 8, 231, 377, 4, 3750, 316, 12, 2151, 1407, 12, 658, 6, 2408, 872, 21, 3625, 723, 11, 5, 384, 250, 4377, 333, 4, 4993, 316, 377, 6, 5, 80, 1134, 969, 1233, 3855, 9, 3137, 368, 27607, 1274, 396, 1233, 2249, 227, 5, 80, 1134, 4, 133, 1209, 1168, 21, 3625, 723, 11, 5, 226, 4454, 975, 4377, 333, 155, 6, 231, 6, 8, 316, 377, 71, 3012, 1118, 7, 5, 384, 250, 4377, 333, 4, 9157, 41092, 19188, 4345, 5, 163, 7205, 5933, 11, 248, 975, 4377, 7, 3982, 25434, 16, 25, 2375, 25, 384, 250, 4377, 11, 37026, 9, 3137, 368, 27607, 2192, 6, 217, 7704, 4, 2], [0, 133, 1500, 21, 1367, 419, 36, 415, 2929, 207, 11049, 1002, 43, 528, 7, 1022, 11, 5181, 1052, 23, 538, 2806, 4815, 4, 41981, 35, 83, 746, 9, 16491, 398, 1484, 58, 5530, 7, 1169, 18441, 15671, 7443, 24238, 148, 21178, 36, 33225, 1484, 43, 50, 2526, 1198, 40179, 575, 36, 31663, 1484, 322, 18276, 20676, 12971, 7, 18441, 15671, 7443, 24238, 829, 10, 1266, 36, 6243, 43, 9, 16491, 246, 36, 36603, 43, 38762, 2569, 43991, 4, 2709, 1484, 19, 41, 2557, 4817, 868, 17301, 12989, 6, 89, 21, 10, 7280, 11, 5, 731, 9, 671, 9, 10, 29515, 17268, 11, 1484, 54, 829, 2569, 43991, 1118, 19, 2526, 575, 36, 4006, 4, 176, 207, 1118, 19, 654, 4, 401, 4234, 221, 5214, 288, 4, 3933, 322, 28965, 158, 4, 176, 207, 9, 1484, 12971, 7, 18441, 15671, 7443, 24238, 148, 21178, 58, 4299, 23, 1098, 15462, 1118, 19, 365, 4, 306, 207, 54, 829, 2526, 575, 36, 510, 5214, 288, 4, 5339, 322, 2], [0, 133, 21087, 9, 22189, 26465, 1130, 155, 4, 245, 12, 12851, 81, 5, 375, 80, 1724, 3970, 112, 4, 306, 2383, 176, 207, 11, 1005, 8, 5, 315, 532, 4, 104, 1290, 405, 1938, 1241, 5, 3024, 2092, 7, 28, 3059, 19, 5, 709, 9, 22189, 26465, 8, 23, 18137, 20508, 329, 8557, 11, 34789, 16, 3059, 19, 10, 239, 810, 9, 2623, 22189, 26465, 4, 2], [0, 31359, 2788, 35, 96, 336, 6, 538, 7193, 373, 13, 5, 709, 9, 41, 5497, 8, 5145, 2084, 4892, 8628, 1860, 3448, 23, 4881, 5, 24971, 9, 2084, 4892, 8628, 6, 14565, 5, 6976, 9, 11096, 8, 6886, 6, 8, 22749, 154, 9235, 4, 713, 557, 4026, 16, 14485, 19, 5, 557, 7532, 2006, 30, 97, 7193, 4, 2], [0, 41981, 35, 1740, 644, 1014, 7, 494, 777, 6, 6560, 26143, 4089, 58, 2641, 7, 5, 8640, 250, 4, 14229, 5, 892, 675, 36, 996, 377, 238, 5, 746, 346, 9, 1484, 5180, 874, 361, 377, 6, 361, 7, 316, 377, 6, 112, 7, 365, 107, 6, 316, 12, 2890, 107, 8, 81, 1132, 107, 58, 158, 36, 466, 4, 466, 7606, 238, 365, 36, 698, 4, 466, 7606, 238, 231, 36, 245, 4, 466, 7606, 238, 2908, 36, 3367, 4, 401, 7606, 43, 8, 2491, 36, 2022, 4, 401, 7606, 238, 4067, 36, 23687, 1716, 12, 134, 322, 14944, 9, 5, 2357, 1484, 34948, 3986, 6, 2107, 4776, 1313, 13, 26143, 4, 40437, 5154, 1575, 1165, 35, 11696, 36, 282, 5457, 2357, 6, 727, 7606, 238, 13418, 922, 1517, 1115, 8244, 21563, 36, 282, 5457, 2357, 238, 21044, 27688, 1879, 10100, 36, 282, 5457, 1105, 238, 41834, 29851, 23496, 20223, 31395, 36, 282, 5457, 883, 43, 8, 229, 25934, 967, 18, 5284, 36, 282, 5457, 290, 322, 48192, 38907, 9, 23665, 58, 6373, 566, 389, 36, 3248, 4, 466, 7606, 43, 1484, 8, 973, 36, 5479, 4, 398, 7606, 43, 56, 38982, 23712, 102, 4, 9058, 1484, 36, 401, 4, 134, 7606, 43, 54, 2226, 3814, 23665, 829, 575, 23, 41, 12296, 575, 1933, 528, 7, 17960, 9282, 4, 14944, 9, 2357, 1484, 6, 379, 36, 1898, 4, 245, 7606, 43, 56, 2052, 13998, 1938, 13, 26143, 6, 80, 36, 401, 4, 134, 7606, 43, 431, 14, 51, 393, 56, 10, 26143, 13998, 1938, 8, 545, 36, 3818, 4, 245, 7606, 43, 58, 17118, 59, 49, 13998, 1938, 2194, 4, 14944, 9, 167, 54, 431, 51, 58, 1433, 13998, 1538, 6, 365, 36, 5352, 4, 246, 7606, 43, 14574, 7, 5, 1046, 333, 9, 316, 12, 176, 107, 4, 2], [0, 41981, 35, 6278, 2174, 22783, 29, 19897, 8, 1475, 12, 13459, 846, 7231, 6, 30242, 22783, 846, 8, 26703, 23084, 846, 9816, 58, 2006, 4, 17206, 5, 6530, 6, 129, 2631, 4, 406, 207, 36, 1244, 73, 4956, 43, 9, 22783, 846, 12, 8, 2631, 4, 246, 207, 36, 1978, 73, 3083, 43, 9, 23084, 846, 12, 22173, 2172, 56, 18998, 19, 47323, 10974, 4, 10462, 6, 11, 954, 6, 71, 5, 6530, 6, 209, 27311, 1130, 7, 7589, 4, 398, 207, 36, 6468, 73, 20695, 43, 8, 8301, 4, 176, 207, 36, 4429, 73, 4390, 238, 4067, 4, 35505, 7, 30029, 575, 8, 1416, 33646, 67, 13307, 2782, 4, 10462, 6, 2172, 81, 1510, 107, 9, 1046, 58, 3625, 540, 533, 7, 4949, 11, 575, 12, 32632, 17156, 36, 642, 28696, 321, 4, 2546, 238, 8, 3625, 4163, 23084, 846, 12, 22173, 16856, 829, 1416, 36, 642, 5457, 321, 4, 3933, 322, 2], [0, 41981, 35, 20, 1266, 1046, 9, 3597, 21, 654, 107, 4, 3297, 3625, 2782, 33860, 6, 7606, 717, 13386, 3063, 45426, 4376, 6, 46108, 12, 347, 6, 6256, 139, 250, 12, 134, 6, 1368, 29, 9822, 510, 6, 289, 3813, 134, 438, 6, 25408, 8, 289, 3765, 250, 12, 5216, 4, 40258, 7012, 1475, 12, 24812, 250, 12, 134, 14879, 534, 6821, 1517, 30642, 9866, 21, 564, 207, 8, 21, 3059, 19, 795, 6256, 139, 250, 12, 134, 8, 723, 1368, 29, 9822, 510, 1389, 4, 3762, 76, 71, 26190, 6, 1475, 12, 24812, 250, 12, 134, 14879, 534, 6821, 1517, 30642, 9866, 8065, 7, 379, 207, 36, 642, 5457, 321, 4, 35723, 43, 8, 9640, 1475, 12, 24812, 250, 12, 134, 14879, 534, 3266, 8065, 31, 321, 4, 3083, 36, 288, 4, 4419, 12, 288, 4, 6232, 43, 7, 321, 4, 3706, 36, 288, 4, 3272, 12, 288, 4, 5606, 43, 16778, 36, 642, 28696, 321, 4, 19089, 322, 21585, 12, 23655, 1475, 12, 24812, 250, 12, 134, 14879, 534, 1389, 58, 3625, 3059, 19, 10, 8065, 618, 12, 29, 19625, 7606, 717, 13386, 3063, 23, 112, 76, 4, 2], [0, 10197, 2], [0, 47159, 29, 19, 2906, 314, 13228, 32127, 13550, 620, 12589, 5043, 56, 3625, 2906, 10, 2723, 636, 5407, 1164, 6, 1130, 10, 2723, 636, 37760, 6, 8, 3625, 5943, 86, 12, 560, 12, 28250, 4996, 13428, 4, 7605, 5, 6229, 26268, 6, 10, 2723, 636, 37760, 8, 10, 2723, 636, 13103, 783, 25286, 1836, 58, 2006, 25, 762, 26948, 3277, 9, 10, 2723, 636, 5407, 1164, 4, 2], [0, 41981, 83, 746, 9, 4034, 262, 2036, 92, 1200, 58, 431, 11, 305, 2957, 260, 412, 31, 719, 132, 6, 954, 6, 7, 494, 545, 6, 2760, 4, 17206, 5, 1504, 2020, 9, 305, 2957, 260, 412, 6, 5, 1609, 6214, 17745, 12203, 21, 6373, 566, 1046, 333, 132, 36, 9064, 3145, 17, 23171, 5214, 17, 23171, 306, 4, 2517, 238, 1432, 30, 333, 132, 7, 155, 36, 9064, 3145, 17, 23171, 5214, 17, 23171, 176, 4, 5606, 238, 8, 333, 132, 7, 204, 36, 9064, 3145, 17, 23171, 5214, 17, 23171, 134, 4, 4563, 322, 10462, 6, 5, 19329, 21911, 1860, 13, 4881, 5, 2199, 17866, 2006, 2172, 17, 23171, 48054, 8210, 17, 23171, 3506, 107, 793, 25, 10, 3887, 333, 6, 1432, 30, 167, 2248, 2383, 4027, 107, 793, 4, 2], [0, 1121, 8067, 7754, 6, 230, 10311, 969, 10, 38706, 7333, 636, 1683, 81, 5, 709, 9, 8556, 6, 2284, 62, 7, 195, 12, 698, 44200, 448, 7, 7280, 23, 723, 26069, 4, 1121, 8067, 1886, 118, 13604, 44601, 6, 8316, 176, 2744, 28124, 58, 42040, 8, 45427, 30, 230, 10311, 11, 10, 1122, 12234, 4, 33295, 21103, 40867, 16572, 969, 41, 30401, 8, 10, 4878, 9, 5407, 6626, 45094, 9, 5, 28221, 12, 24235, 385, 10932, 19, 230, 10311, 25, 157, 4, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}\n"
+ ]
+ }
+ ],
+ "source": [
+ "with tokenizer.as_target_tokenizer():\n",
+ " print(tokenizer([str(item['red_panel_text_box_body']) for idx, item in result.iterrows()]))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "executionInfo": {
+ "elapsed": 374,
+ "status": "ok",
+ "timestamp": 1669576385830,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "YgNwfk7Hm352"
+ },
+ "outputs": [],
+ "source": [
+ "if model_checkpoint in [\"t5-small\", \"t5-base\", \"t5-larg\", \"t5-3b\", \"t5-11b\"]:\n",
+ " prefix = \"summarize: \"\n",
+ "else:\n",
+ " prefix = \"\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "executionInfo": {
+ "elapsed": 271,
+ "status": "ok",
+ "timestamp": 1669576390877,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "7p69v3F-7y3l"
+ },
+ "outputs": [],
+ "source": [
+ "from datasets import Dataset, DatasetDict\n",
+ "\n",
+ "raw_data = Dataset.from_pandas(red_panel)\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "executionInfo": {
+ "elapsed": 623,
+ "status": "ok",
+ "timestamp": 1669576398897,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "uMYy0T5snVms"
+ },
+ "outputs": [],
+ "source": [
+ "max_input_length = 256\n",
+ "max_target_length = 128\n",
+ "\n",
+ "def preprocess_function(examples):\n",
+ " inputs = [prefix + doc for doc in examples[\"red_panel_text_box_body\"]]\n",
+ " model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True)\n",
+ " print('here')\n",
+ " # Setup the tokenizer for targets\n",
+ " with tokenizer.as_target_tokenizer():\n",
+ " labels = tokenizer([str(i) for i in examples['red_panel_text_box_body']], max_length=max_target_length, truncation=True)\n",
+ "\n",
+ " model_inputs[\"labels\"] = labels[\"input_ids\"]\n",
+ " return model_inputs"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "executionInfo": {
+ "elapsed": 321,
+ "status": "ok",
+ "timestamp": 1669576404041,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "LY8V30iknZkK",
+ "outputId": "dadf1d4b-4549-48b4-ea0a-a9b80c53d41e"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "here\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "{'input_ids': [[0, 2709, 41724, 219, 1090, 337, 22259, 11759, 11, 5, 7018, 337, 29943, 35, 83, 37920, 1421, 16, 441, 7, 7006, 10, 10556, 22259, 11759, 609, 11, 10, 1810, 3143, 9, 29943, 5473, 11174, 4458, 2], [0, 2709, 16828, 9, 239, 12, 219, 22613, 38175, 2726, 19, 2167, 21092, 9, 538, 14082, 14819, 17719, 7, 499, 23377, 5183, 1274, 35, 497, 5, 239, 5181, 6, 221, 6153, 12, 725, 134, 2301, 11, 2428, 14218, 36, 13055, 487, 12, 725, 134, 12, 406, 43, 19057, 55, 6, 9641, 2301, 19, 33906, 417, 12, 725, 134, 58, 275, 11, 748, 27771, 12, 725, 134, 3618, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'labels': [[0, 2709, 41724, 219, 1090, 337, 22259, 11759, 11, 5, 7018, 337, 29943, 35, 83, 37920, 1421, 16, 441, 7, 7006, 10, 10556, 22259, 11759, 609, 11, 10, 1810, 3143, 9, 29943, 5473, 11174, 4458, 2], [0, 2709, 16828, 9, 239, 12, 219, 22613, 38175, 2726, 19, 2167, 21092, 9, 538, 14082, 14819, 17719, 7, 499, 23377, 5183, 1274, 35, 497, 5, 239, 5181, 6, 221, 6153, 12, 725, 134, 2301, 11, 2428, 14218, 36, 13055, 487, 12, 725, 134, 12, 406, 43, 19057, 55, 6, 9641, 2301, 19, 33906, 417, 12, 725, 134, 58, 275, 11, 748, 27771, 12, 725, 134, 3618, 2]]}"
+ ]
+ },
+ "execution_count": 24,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "preprocess_function(red_panel[:2])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 66,
+ "referenced_widgets": [
+ "bdfff319aabb4945839b4005998a33f6",
+ "0e829cb1baaa4f328c81962b8387d7b2",
+ "cd5a450b5aa64a26b0bce472d9cb3876",
+ "ad906e312a214064ab07fbc101dd38a8",
+ "529be118e3874e89aa14be376861b9e6",
+ "03cc14e13e57403290726fbaa456ad1b",
+ "fd96d7b076b841df9b3f59f2906e3e2e",
+ "69dfaff72d6c45aabdbd920709914a94",
+ "47e1811ef6784f808202d973b364ec34",
+ "8a3d504e7bab45289110d16a637b5cab",
+ "18c3aea650934b52abbd1a54ab659581"
+ ]
+ },
+ "executionInfo": {
+ "elapsed": 404,
+ "status": "ok",
+ "timestamp": 1669576408931,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "wDwXFKU_oHlt",
+ "outputId": "479d2bd3-70b4-48be-cbe5-77e2b629d48b"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "31bb088fedaa408f974ce97de968a715",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/1 [00:00, ?ba/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "here\n"
+ ]
+ }
+ ],
+ "source": [
+ "tokenized_datasets = raw_data.map(preprocess_function, batched=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 49,
+ "referenced_widgets": [
+ "310364ac4e554a71bb800150efb4e95b",
+ "f8ee3ffd41f043e6a69441425bf9e8eb",
+ "b3c8ba9d9dba4a91b59cd80c9613df72",
+ "b5bb11c9831343aaba8f762c96458ba8",
+ "3c82385919ad4a6eb7602b4fc572b4b6",
+ "04e7b764ddc84f82be0c8d770b917338",
+ "32b08866ffec461ebaec8ea1e31c6214",
+ "23233289ad584854ae941a706b940529",
+ "384c726225514427b5842166b93eea50",
+ "2c8fe9936b544b14984723e82b1106a1",
+ "365047e08ee64faba80eb1ad825bca1b"
+ ]
+ },
+ "executionInfo": {
+ "elapsed": 37257,
+ "status": "ok",
+ "timestamp": 1669576448765,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "Hjl5EBndpPwm",
+ "outputId": "799e7e00-f6bf-44b6-fbf9-5553451c8dd8"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "2022-11-28 00:17:55.780028: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n",
+ "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
+ "2022-11-28 00:17:56.127084: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\n",
+ "2022-11-28 00:17:56.127127: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\n",
+ "2022-11-28 00:17:56.181546: E tensorflow/stream_executor/cuda/cuda_blas.cc:2981] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
+ "2022-11-28 00:17:57.172608: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory\n",
+ "2022-11-28 00:17:57.172712: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory\n",
+ "2022-11-28 00:17:57.172721: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "8a44e797bed24acdac206b01e750eb73",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Downloading: 0%| | 0.00/1.51G [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from transformers import AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq, Seq2SeqTrainingArguments, Seq2SeqTrainer\n",
+ "\n",
+ "model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "executionInfo": {
+ "elapsed": 418,
+ "status": "ok",
+ "timestamp": 1669576453237,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "2C_UCugqr4Mo"
+ },
+ "outputs": [],
+ "source": [
+ "batch_size = 16\n",
+ "model_name = model_checkpoint.split(\"/\")[-1]\n",
+ "args = Seq2SeqTrainingArguments(\n",
+ " f\"{model_name}-finetuned-xsum\",\n",
+ " evaluation_strategy = \"epoch\",\n",
+ " learning_rate=2e-5,\n",
+ " per_device_train_batch_size=batch_size,\n",
+ " per_device_eval_batch_size=batch_size,\n",
+ " weight_decay=0.01,\n",
+ " save_total_limit=3,\n",
+ " num_train_epochs=1,\n",
+ " predict_with_generate=True,\n",
+ " push_to_hub=True,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "executionInfo": {
+ "elapsed": 422,
+ "status": "ok",
+ "timestamp": 1669576459547,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "BvGXfqnCsZFl"
+ },
+ "outputs": [],
+ "source": [
+ "data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "executionInfo": {
+ "elapsed": 10,
+ "status": "ok",
+ "timestamp": 1669576461903,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "eKE60Ta8tXjq"
+ },
+ "outputs": [],
+ "source": [
+ "import nltk\n",
+ "import numpy as np\n",
+ "\n",
+ "def compute_metrics(eval_pred):\n",
+ " predictions, labels = eval_pred\n",
+ " decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)\n",
+ " # Replace -100 in the labels as we can't decode them.\n",
+ " labels = np.where(labels != -100, labels, tokenizer.pad_token_id)\n",
+ " decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)\n",
+ " \n",
+ " # Rouge expects a newline after each sentence\n",
+ " decoded_preds = [\"\\n\".join(nltk.sent_tokenize(pred.strip())) for pred in decoded_preds]\n",
+ " decoded_labels = [\"\\n\".join(nltk.sent_tokenize(label.strip())) for label in decoded_labels]\n",
+ " \n",
+ " result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)\n",
+ " # Extract a few results\n",
+ " result = {key: value.mid.fmeasure * 100 for key, value in result.items()}\n",
+ " \n",
+ " # Add mean generated length\n",
+ " prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in predictions]\n",
+ " result[\"gen_len\"] = np.mean(prediction_lens)\n",
+ " \n",
+ " return {k: round(v, 4) for k, v in result.items()}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "executionInfo": {
+ "elapsed": 9965,
+ "status": "ok",
+ "timestamp": 1669576476542,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "CUrBxFvltm1W",
+ "outputId": "11588487-4973-406c-9e93-fb1b6f27010b"
+ },
+ "outputs": [
+ {
+ "ename": "OSError",
+ "evalue": "Looks like you do not have git-lfs installed, please install. You can install from https://git-lfs.github.com/. Then run `git lfs install` (you only have to do this once).",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/huggingface_hub/repository.py:599\u001b[0m, in \u001b[0;36mRepository.check_git_versions\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 598\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 599\u001b[0m lfs_version \u001b[38;5;241m=\u001b[39m \u001b[43mrun_subprocess\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 600\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mgit-lfs --version\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msplit\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlocal_dir\u001b[49m\n\u001b[1;32m 601\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mstdout\u001b[38;5;241m.\u001b[39mstrip()\n\u001b[1;32m 602\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mFileNotFoundError\u001b[39;00m:\n",
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/huggingface_hub/utils/_subprocess.py:52\u001b[0m, in \u001b[0;36mrun_subprocess\u001b[0;34m(command, folder, check, **kwargs)\u001b[0m\n\u001b[1;32m 50\u001b[0m command \u001b[38;5;241m=\u001b[39m command\u001b[38;5;241m.\u001b[39msplit()\n\u001b[0;32m---> 52\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43msubprocess\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 53\u001b[0m \u001b[43m \u001b[49m\u001b[43mcommand\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 54\u001b[0m \u001b[43m \u001b[49m\u001b[43mstderr\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msubprocess\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mPIPE\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 55\u001b[0m \u001b[43m \u001b[49m\u001b[43mstdout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msubprocess\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mPIPE\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 56\u001b[0m \u001b[43m \u001b[49m\u001b[43mcheck\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcheck\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 57\u001b[0m \u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mutf-8\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 58\u001b[0m \u001b[43m \u001b[49m\u001b[43mcwd\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfolder\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mos\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgetcwd\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 59\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 60\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
+ "File \u001b[0;32m/usr/lib/python3.10/subprocess.py:501\u001b[0m, in \u001b[0;36mrun\u001b[0;34m(input, capture_output, timeout, check, *popenargs, **kwargs)\u001b[0m\n\u001b[1;32m 499\u001b[0m kwargs[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mstderr\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m PIPE\n\u001b[0;32m--> 501\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[43mPopen\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mpopenargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mas\u001b[39;00m process:\n\u001b[1;32m 502\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n",
+ "File \u001b[0;32m/usr/lib/python3.10/subprocess.py:969\u001b[0m, in \u001b[0;36mPopen.__init__\u001b[0;34m(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_signals, start_new_session, pass_fds, user, group, extra_groups, encoding, errors, text, umask, pipesize)\u001b[0m\n\u001b[1;32m 966\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstderr \u001b[38;5;241m=\u001b[39m io\u001b[38;5;241m.\u001b[39mTextIOWrapper(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstderr,\n\u001b[1;32m 967\u001b[0m encoding\u001b[38;5;241m=\u001b[39mencoding, errors\u001b[38;5;241m=\u001b[39merrors)\n\u001b[0;32m--> 969\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_execute_child\u001b[49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mexecutable\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpreexec_fn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mclose_fds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 970\u001b[0m \u001b[43m \u001b[49m\u001b[43mpass_fds\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcwd\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43menv\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 971\u001b[0m \u001b[43m \u001b[49m\u001b[43mstartupinfo\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcreationflags\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mshell\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 972\u001b[0m \u001b[43m \u001b[49m\u001b[43mp2cread\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mp2cwrite\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 973\u001b[0m \u001b[43m \u001b[49m\u001b[43mc2pread\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mc2pwrite\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 974\u001b[0m \u001b[43m \u001b[49m\u001b[43merrread\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43merrwrite\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 975\u001b[0m \u001b[43m \u001b[49m\u001b[43mrestore_signals\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 976\u001b[0m \u001b[43m \u001b[49m\u001b[43mgid\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgids\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43muid\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mumask\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 977\u001b[0m \u001b[43m \u001b[49m\u001b[43mstart_new_session\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 978\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m:\n\u001b[1;32m 979\u001b[0m \u001b[38;5;66;03m# Cleanup if the child failed starting.\u001b[39;00m\n",
+ "File \u001b[0;32m/usr/lib/python3.10/subprocess.py:1845\u001b[0m, in \u001b[0;36mPopen._execute_child\u001b[0;34m(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env, startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread, errwrite, restore_signals, gid, gids, uid, umask, start_new_session)\u001b[0m\n\u001b[1;32m 1844\u001b[0m err_msg \u001b[38;5;241m=\u001b[39m os\u001b[38;5;241m.\u001b[39mstrerror(errno_num)\n\u001b[0;32m-> 1845\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m child_exception_type(errno_num, err_msg, err_filename)\n\u001b[1;32m 1846\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m child_exception_type(err_msg)\n",
+ "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'git-lfs'",
+ "\nDuring handling of the above exception, another exception occurred:\n",
+ "\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)",
+ "Cell \u001b[0;32mIn [38], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m trainer \u001b[38;5;241m=\u001b[39m \u001b[43mSeq2SeqTrainer\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 4\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrain_dataset\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtokenized_datasets\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 5\u001b[0m \u001b[43m \u001b[49m\u001b[43meval_dataset\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtokenized_datasets\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 6\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_collator\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_collator\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 7\u001b[0m \u001b[43m \u001b[49m\u001b[43mtokenizer\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtokenizer\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 8\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompute_metrics\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcompute_metrics\u001b[49m\n\u001b[1;32m 9\u001b[0m \u001b[43m)\u001b[49m\n",
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/transformers/trainer.py:464\u001b[0m, in \u001b[0;36mTrainer.__init__\u001b[0;34m(self, model, args, data_collator, train_dataset, eval_dataset, tokenizer, model_init, compute_metrics, callbacks, optimizers, preprocess_logits_for_metrics)\u001b[0m\n\u001b[1;32m 462\u001b[0m \u001b[38;5;66;03m# Create clone of distant repo and output directory if needed\u001b[39;00m\n\u001b[1;32m 463\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs\u001b[38;5;241m.\u001b[39mpush_to_hub:\n\u001b[0;32m--> 464\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minit_git_repo\u001b[49m\u001b[43m(\u001b[49m\u001b[43mat_init\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[1;32m 465\u001b[0m \u001b[38;5;66;03m# In case of pull, we need to make sure every process has the latest.\u001b[39;00m\n\u001b[1;32m 466\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_torch_tpu_available():\n",
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/transformers/trainer.py:3106\u001b[0m, in \u001b[0;36mTrainer.init_git_repo\u001b[0;34m(self, at_init)\u001b[0m\n\u001b[1;32m 3103\u001b[0m repo_name \u001b[38;5;241m=\u001b[39m get_full_repo_name(repo_name, token\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs\u001b[38;5;241m.\u001b[39mhub_token)\n\u001b[1;32m 3105\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 3106\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mrepo \u001b[38;5;241m=\u001b[39m \u001b[43mRepository\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 3107\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moutput_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3108\u001b[0m \u001b[43m \u001b[49m\u001b[43mclone_from\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrepo_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3109\u001b[0m \u001b[43m \u001b[49m\u001b[43muse_auth_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_auth_token\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3110\u001b[0m \u001b[43m \u001b[49m\u001b[43mprivate\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhub_private_repo\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3111\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3112\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mEnvironmentError\u001b[39;00m:\n\u001b[1;32m 3113\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs\u001b[38;5;241m.\u001b[39moverwrite_output_dir \u001b[38;5;129;01mand\u001b[39;00m at_init:\n\u001b[1;32m 3114\u001b[0m \u001b[38;5;66;03m# Try again after wiping output_dir\u001b[39;00m\n",
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/huggingface_hub/utils/_deprecation.py:98\u001b[0m, in \u001b[0;36m_deprecate_arguments.._inner_deprecate_positional_args..inner_f\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 96\u001b[0m message \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m custom_message\n\u001b[1;32m 97\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(message, \u001b[38;5;167;01mFutureWarning\u001b[39;00m)\n\u001b[0;32m---> 98\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mf\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/huggingface_hub/repository.py:497\u001b[0m, in \u001b[0;36mRepository.__init__\u001b[0;34m(self, local_dir, clone_from, repo_type, use_auth_token, git_user, git_email, revision, private, skip_lfs_files, client)\u001b[0m\n\u001b[1;32m 494\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mskip_lfs_files \u001b[38;5;241m=\u001b[39m skip_lfs_files\n\u001b[1;32m 495\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mclient \u001b[38;5;241m=\u001b[39m client \u001b[38;5;28;01mif\u001b[39;00m client \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m HfApi()\n\u001b[0;32m--> 497\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcheck_git_versions\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 499\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(use_auth_token, \u001b[38;5;28mstr\u001b[39m):\n\u001b[1;32m 500\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhuggingface_token \u001b[38;5;241m=\u001b[39m use_auth_token\n",
+ "File \u001b[0;32m~/.local/lib/python3.10/site-packages/huggingface_hub/repository.py:603\u001b[0m, in \u001b[0;36mRepository.check_git_versions\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 599\u001b[0m lfs_version \u001b[38;5;241m=\u001b[39m run_subprocess(\n\u001b[1;32m 600\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mgit-lfs --version\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39msplit(), \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlocal_dir\n\u001b[1;32m 601\u001b[0m )\u001b[38;5;241m.\u001b[39mstdout\u001b[38;5;241m.\u001b[39mstrip()\n\u001b[1;32m 602\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mFileNotFoundError\u001b[39;00m:\n\u001b[0;32m--> 603\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mEnvironmentError\u001b[39;00m(\n\u001b[1;32m 604\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mLooks like you do not have git-lfs installed, please install.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 605\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m You can install from https://git-lfs.github.com/.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 606\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m Then run `git lfs install` (you only have to do this once).\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 607\u001b[0m )\n\u001b[1;32m 608\u001b[0m logger\u001b[38;5;241m.\u001b[39minfo(git_version \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m lfs_version)\n",
+ "\u001b[0;31mOSError\u001b[0m: Looks like you do not have git-lfs installed, please install. You can install from https://git-lfs.github.com/. Then run `git lfs install` (you only have to do this once)."
+ ]
+ }
+ ],
+ "source": [
+ "trainer = Seq2SeqTrainer(\n",
+ " model,\n",
+ " args,\n",
+ " train_dataset=tokenized_datasets,\n",
+ " eval_dataset=tokenized_datasets,\n",
+ " data_collator=data_collator,\n",
+ " tokenizer=tokenizer,\n",
+ " compute_metrics=compute_metrics\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "executionInfo": {
+ "elapsed": 578,
+ "status": "ok",
+ "timestamp": 1669576480801,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "iWtpY6UvsrqL"
+ },
+ "outputs": [],
+ "source": [
+ "metric = load_metric(\"rouge\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 474
+ },
+ "executionInfo": {
+ "elapsed": 32697,
+ "status": "ok",
+ "timestamp": 1669576769127,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "59h69HXKttbi",
+ "outputId": "b885f66c-2377-4826-c85e-adb42b5132d7"
+ },
+ "outputs": [],
+ "source": [
+ "trainer.train()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "executionInfo": {
+ "elapsed": 328,
+ "status": "ok",
+ "timestamp": 1669576814482,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "9Ewl0xuLhzr1",
+ "outputId": "c4d22171-c1ac-40e3-9f0a-b058271a2c71"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Error: Failed to call git rev-parse --git-dir --show-toplevel: \"fatal: not a git repository (or any of the parent directories): .git\\n\"\n",
+ "Git LFS initialized.\n"
+ ]
+ }
+ ],
+ "source": [
+ "!git lfs install"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000,
+ "referenced_widgets": [
+ "e6da8f1c969c4116b54e964b78eeacfe",
+ "66292eb8434a4ce6a6d87b80c1a5d5cf",
+ "51ecb48b3aeb41cca1b2544aaa6d4297",
+ "227f48e8b0c54dedafe8837de08c046b",
+ "9bd09f0209b34586a8e52e549371dc9a",
+ "c6b05ef0ab714f6ebcb36f1ae3cd9706",
+ "0083d899a9fe4a75ac2ecc399d78f7e5",
+ "9e24fad5fa2244efb3789fd73f04780a",
+ "afa8052f63af4e2889921afbf6966f97",
+ "5b600008c0204e17b3a499c383486a45",
+ "1c751ee6ba044b26934f26a39981db27",
+ "2c1637186ffa402fbf9a581558931503",
+ "65020f9d0bb74135afd0a4958b652e7d",
+ "f2d03ae9392b47fb9c0ddf08097a9651",
+ "6a724ac6378641889ebf41de6d6885d4",
+ "d7c1ac4f603f4a518679ef85e3b1224a",
+ "7bf2ca5db1b14122a6a781df43c12acd",
+ "cb513a3c13dd4afa9e9967ac18cbe3c9",
+ "e38a776b6c1b4a269af32e38efde579c",
+ "39e1026c224a4b7689d60ab3d354fe50",
+ "ac44a05a3ac442f78082e6387090a984",
+ "94ec073846444cf6bc988e00b4b8bbce"
+ ]
+ },
+ "executionInfo": {
+ "elapsed": 26742,
+ "status": "error",
+ "timestamp": 1669576920460,
+ "user": {
+ "displayName": "Hayk Nersesyan",
+ "userId": "12126341854567580260"
+ },
+ "user_tz": -240
+ },
+ "id": "KVmCwgAS7SI_",
+ "outputId": "524fabd2-18bf-445a-ce63-bdd6bed6331a"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Saving model checkpoint to bart-large-cnn-finetuned-xsum\n",
+ "Configuration saved in bart-large-cnn-finetuned-xsum/config.json\n",
+ "Model weights saved in bart-large-cnn-finetuned-xsum/pytorch_model.bin\n",
+ "tokenizer config file saved in bart-large-cnn-finetuned-xsum/tokenizer_config.json\n",
+ "Special tokens file saved in bart-large-cnn-finetuned-xsum/special_tokens_map.json\n",
+ "Several commits (2) will be pushed upstream.\n",
+ "WARNING:huggingface_hub.repository:Several commits (2) will be pushed upstream.\n",
+ "The progress bars may be unreliable.\n",
+ "WARNING:huggingface_hub.repository:The progress bars may be unreliable.\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "e6da8f1c969c4116b54e964b78eeacfe",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Upload file runs/Nov27_19-14-12_8af7ca6e45dd/1669576736.3078728/events.out.tfevents.1669576736.8af7ca6e45dd.77…"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "2c1637186ffa402fbf9a581558931503",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Upload file runs/Nov27_19-14-12_8af7ca6e45dd/events.out.tfevents.1669576736.8af7ca6e45dd.77.2: 60%|#####9 …"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "remote: \u001b[0;31m----------------------------------------------------------\u001b[0;0m \n",
+ "remote: \u001b[0;31mYour push was rejected for the following reasons:\u001b[0;0m \n",
+ "remote: \u001b[0;31mDENIED update refs/heads/main: forbidden\u001b[0;0m \n",
+ "remote: \u001b[0;31m----------------------------------------------------------\u001b[0;0m \n",
+ "To https://huggingface.co/Hayk96/bart-large-cnn-finetuned-xsum\n",
+ " ! [remote rejected] main -> main (pre-receive hook declined)\n",
+ "error: failed to push some refs to 'https://user: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@huggingface.co/Hayk96/bart-large-cnn-finetuned-xsum'\n",
+ "\n",
+ "WARNING:huggingface_hub.repository:remote: \u001b[0;31m----------------------------------------------------------\u001b[0;0m \n",
+ "remote: \u001b[0;31mYour push was rejected for the following reasons:\u001b[0;0m \n",
+ "remote: \u001b[0;31mDENIED update refs/heads/main: forbidden\u001b[0;0m \n",
+ "remote: \u001b[0;31m----------------------------------------------------------\u001b[0;0m \n",
+ "To https://huggingface.co/Hayk96/bart-large-cnn-finetuned-xsum\n",
+ " ! [remote rejected] main -> main (pre-receive hook declined)\n",
+ "error: failed to push some refs to 'https://user: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@huggingface.co/Hayk96/bart-large-cnn-finetuned-xsum'\n",
+ "\n"
+ ]
+ },
+ {
+ "ename": "OSError",
+ "evalue": "ignored",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mCalledProcessError\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/huggingface_hub/repository.py\u001b[0m in \u001b[0;36mgit_push\u001b[0;34m(self, upstream, blocking, auto_lfs_prune)\u001b[0m\n\u001b[1;32m 1207\u001b[0m raise subprocess.CalledProcessError(\n\u001b[0;32m-> 1208\u001b[0;31m \u001b[0mreturn_code\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mprocess\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moutput\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mstdout\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstderr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mstderr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1209\u001b[0m )\n",
+ "\u001b[0;31mCalledProcessError\u001b[0m: Command '['git', 'push', '--set-upstream', 'origin', 'main']' returned non-zero exit status 1.",
+ "\nDuring handling of the above exception, another exception occurred:\n",
+ "\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtrainer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpush_to_hub\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+ "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/transformers/trainer.py\u001b[0m in \u001b[0;36mpush_to_hub\u001b[0;34m(self, commit_message, blocking, **kwargs)\u001b[0m\n\u001b[1;32m 3451\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3452\u001b[0m git_head_commit_url = self.repo.push_to_hub(\n\u001b[0;32m-> 3453\u001b[0;31m \u001b[0mcommit_message\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcommit_message\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mblocking\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mblocking\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mauto_lfs_prune\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3454\u001b[0m )\n\u001b[1;32m 3455\u001b[0m \u001b[0;31m# push separately the model card to be independant from the rest of the model\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/huggingface_hub/repository.py\u001b[0m in \u001b[0;36mpush_to_hub\u001b[0;34m(self, commit_message, blocking, clean_ok, auto_lfs_prune)\u001b[0m\n\u001b[1;32m 1433\u001b[0m \u001b[0mupstream\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34mf\"origin {self.current_branch}\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1434\u001b[0m \u001b[0mblocking\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mblocking\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1435\u001b[0;31m \u001b[0mauto_lfs_prune\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mauto_lfs_prune\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1436\u001b[0m )\n\u001b[1;32m 1437\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/huggingface_hub/repository.py\u001b[0m in \u001b[0;36mgit_push\u001b[0;34m(self, upstream, blocking, auto_lfs_prune)\u001b[0m\n\u001b[1;32m 1210\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1211\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0msubprocess\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mCalledProcessError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mexc\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1212\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mEnvironmentError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mexc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstderr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1213\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1214\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mblocking\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;31mOSError\u001b[0m: remote: \u001b[0;31m----------------------------------------------------------\u001b[0;0m \nremote: \u001b[0;31mYour push was rejected for the following reasons:\u001b[0;0m \nremote: \u001b[0;31mDENIED update refs/heads/main: forbidden\u001b[0;0m \nremote: \u001b[0;31m----------------------------------------------------------\u001b[0;0m \nTo https://huggingface.co/Hayk96/bart-large-cnn-finetuned-xsum\n ! [remote rejected] main -> main (pre-receive hook declined)\nerror: failed to push some refs to 'https://user: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@huggingface.co/Hayk96/bart-large-cnn-finetuned-xsum'\n"
+ ]
+ }
+ ],
+ "source": [
+ "trainer.push_to_hub()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "luNSndiz51Cf"
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "authorship_tag": "ABX9TyOTeSSmSj2YKbiGNPkT2+Cg",
+ "provenance": []
+ },
+ "gpuClass": "standard",
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.6"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "0083d899a9fe4a75ac2ecc399d78f7e5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "01c98b14c07d4258aab7671240838ef6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "01d888d4b4f449af85114e6da4570452": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "03c8bdaa055e465f8a941ff333767409": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "03cc14e13e57403290726fbaa456ad1b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "04e7b764ddc84f82be0c8d770b917338": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "05aec460b82241ad9da702e6398f83a9": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "05b2a71290474944b5ae83e6acbe6adc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c80b42c6b5c04f4e9452c7af595f1d2c",
+ "max": 1585,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_ef09742724b34b75b051ac54db2383ed",
+ "value": 1585
+ }
+ },
+ "07198da37bbe454db23f02d9bf9ad855": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_df0b2994481f47568d388440024dff5a",
+ "placeholder": "​",
+ "style": "IPY_MODEL_103fbfda1b924f1b87ead6dd93ebe447",
+ "value": " 456k/456k [00:00<00:00, 931kB/s]"
+ }
+ },
+ "0b38e872bc524464a2b3abe7f2f9b0be": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_c6a5f491bb4c4136bcb5f90d3365bd5f",
+ "IPY_MODEL_05b2a71290474944b5ae83e6acbe6adc",
+ "IPY_MODEL_b8b0c77876a0404db627bac733d028e8"
+ ],
+ "layout": "IPY_MODEL_92023e14dbcf4c218f338c926e40ae14"
+ }
+ },
+ "0c4d50cf8f8d425e86960bc2dc269c89": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0e829cb1baaa4f328c81962b8387d7b2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_03cc14e13e57403290726fbaa456ad1b",
+ "placeholder": "​",
+ "style": "IPY_MODEL_fd96d7b076b841df9b3f59f2906e3e2e",
+ "value": "100%"
+ }
+ },
+ "103fbfda1b924f1b87ead6dd93ebe447": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "1458810480da42cc81793be5af19d9fd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "PasswordModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "PasswordModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "PasswordView",
+ "continuous_update": true,
+ "description": "Token:",
+ "description_tooltip": null,
+ "disabled": false,
+ "layout": "IPY_MODEL_bd84f71efa3942b69c337203376d6f9d",
+ "placeholder": "​",
+ "style": "IPY_MODEL_50339a3619674663958b9cacc42224b0",
+ "value": ""
+ }
+ },
+ "14946c0a0b124448aec12ab62adecee9": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "158c7ddf69924f27b637b9a2f11bcaa0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "179dd0a736aa470a993585febe5c1462": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6ff11cd026154544bee3ea10ceff2c2d",
+ "max": 2160,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_3aef5fca9d01411dbf02c42bb9edd293",
+ "value": 2160
+ }
+ },
+ "18c3aea650934b52abbd1a54ab659581": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "1bee7da564a74fbb9521433b2bd8ad54": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "1c751ee6ba044b26934f26a39981db27": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "2205adb4fcd649e78977990748e1e0f3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e07d939742d54ac29c8f8e00b7af5604",
+ "placeholder": "​",
+ "style": "IPY_MODEL_01d888d4b4f449af85114e6da4570452",
+ "value": "Downloading: 100%"
+ }
+ },
+ "227f48e8b0c54dedafe8837de08c046b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_5b600008c0204e17b3a499c383486a45",
+ "placeholder": "​",
+ "style": "IPY_MODEL_1c751ee6ba044b26934f26a39981db27",
+ "value": " 5.60k/5.60k [00:03<00:00, 749B/s]"
+ }
+ },
+ "23233289ad584854ae941a706b940529": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "243833c3431e4353af27113e5a8b0a7f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_465d36a2f4b340dbbb7844f5187a91c6",
+ "IPY_MODEL_6bc673e8cebe4c28bc7fb967615bed9a",
+ "IPY_MODEL_a68722b5ccb144e2bca404b7cd00cfcb"
+ ],
+ "layout": "IPY_MODEL_b8ad8216b8df4dfb9f87d82824c65087"
+ }
+ },
+ "2a3b7cc5e582416caa24dd2360bb2664": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2c1637186ffa402fbf9a581558931503": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_65020f9d0bb74135afd0a4958b652e7d",
+ "IPY_MODEL_f2d03ae9392b47fb9c0ddf08097a9651",
+ "IPY_MODEL_6a724ac6378641889ebf41de6d6885d4"
+ ],
+ "layout": "IPY_MODEL_d7c1ac4f603f4a518679ef85e3b1224a"
+ }
+ },
+ "2c8fe9936b544b14984723e82b1106a1": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "310364ac4e554a71bb800150efb4e95b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_f8ee3ffd41f043e6a69441425bf9e8eb",
+ "IPY_MODEL_b3c8ba9d9dba4a91b59cd80c9613df72",
+ "IPY_MODEL_b5bb11c9831343aaba8f762c96458ba8"
+ ],
+ "layout": "IPY_MODEL_3c82385919ad4a6eb7602b4fc572b4b6"
+ }
+ },
+ "32b08866ffec461ebaec8ea1e31c6214": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "33e5a40561e64bae86a488e0e62e7597": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_158c7ddf69924f27b637b9a2f11bcaa0",
+ "placeholder": "​",
+ "style": "IPY_MODEL_1bee7da564a74fbb9521433b2bd8ad54",
+ "value": "Downloading: 100%"
+ }
+ },
+ "365047e08ee64faba80eb1ad825bca1b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "384c726225514427b5842166b93eea50": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "38fb2ec3ed86413bacf3213f71cbe4cd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "39e1026c224a4b7689d60ab3d354fe50": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "3aef5fca9d01411dbf02c42bb9edd293": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "3b9d888697984453978d8b82e167a7cd": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": "center",
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": "flex",
+ "flex": null,
+ "flex_flow": "column",
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": "50%"
+ }
+ },
+ "3c70c6d3f27e4ed6ad3e11833ab5a5fc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_2205adb4fcd649e78977990748e1e0f3",
+ "IPY_MODEL_568fc52953454ea398132e8eabf2f7a3",
+ "IPY_MODEL_ba63044392144348b8e4c30869643010"
+ ],
+ "layout": "IPY_MODEL_679aadea6b11431682f884b5ef26c0d3"
+ }
+ },
+ "3c82385919ad4a6eb7602b4fc572b4b6": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "3ff8b3ad219c430083498e2710f9783b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "465d36a2f4b340dbbb7844f5187a91c6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ef9b130ff1264814bb2f80c597466689",
+ "placeholder": "​",
+ "style": "IPY_MODEL_3ff8b3ad219c430083498e2710f9783b",
+ "value": "Downloading: 100%"
+ }
+ },
+ "47e1811ef6784f808202d973b364ec34": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "47f89064d61442caba4adf13852b1708": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "4e3e2875eb2b47abbdfd0994a1a1ab77": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_fa597dbb89aa4f5fac6cc6e0a9859d59",
+ "placeholder": "​",
+ "style": "IPY_MODEL_867595abfc9c4dd28a19346afb584534",
+ "value": " 5.60k/? [00:00<00:00, 56.8kB/s]"
+ }
+ },
+ "4f5c545ae1c949a2990d557fa6152376": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_33e5a40561e64bae86a488e0e62e7597",
+ "IPY_MODEL_9c73476e79a84b1a9361842441c52d53",
+ "IPY_MODEL_07198da37bbe454db23f02d9bf9ad855"
+ ],
+ "layout": "IPY_MODEL_2a3b7cc5e582416caa24dd2360bb2664"
+ }
+ },
+ "50339a3619674663958b9cacc42224b0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "5168fe5634ee4077a558b7328f3a1dbc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "51ecb48b3aeb41cca1b2544aaa6d4297": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9e24fad5fa2244efb3789fd73f04780a",
+ "max": 5736,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_afa8052f63af4e2889921afbf6966f97",
+ "value": 5736
+ }
+ },
+ "522be447cd3a49e5abc09c438405dd2c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_83d334d4b71e4c07a1fc3dac8115f948",
+ "placeholder": "​",
+ "style": "IPY_MODEL_c1aa4ce82ce44a6fbe342d6f9d27ace3",
+ "value": "Downloading builder script: "
+ }
+ },
+ "529be118e3874e89aa14be376861b9e6": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5468607c66ac4a5d893b66de7803a1da": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "558a98c82b4a458096d2f7f5e1088673": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "568fc52953454ea398132e8eabf2f7a3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_558a98c82b4a458096d2f7f5e1088673",
+ "max": 1355863,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_90697bae783b45aeaf1f448d31e3b4c5",
+ "value": 1355863
+ }
+ },
+ "56ac28edb6ca4415ba964f42d4d27bed": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5b600008c0204e17b3a499c383486a45": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "65020f9d0bb74135afd0a4958b652e7d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_7bf2ca5db1b14122a6a781df43c12acd",
+ "placeholder": "​",
+ "style": "IPY_MODEL_cb513a3c13dd4afa9e9967ac18cbe3c9",
+ "value": "Upload file runs/Nov27_19-14-12_8af7ca6e45dd/events.out.tfevents.1669576736.8af7ca6e45dd.77.2: 100%"
+ }
+ },
+ "66292eb8434a4ce6a6d87b80c1a5d5cf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c6b05ef0ab714f6ebcb36f1ae3cd9706",
+ "placeholder": "​",
+ "style": "IPY_MODEL_0083d899a9fe4a75ac2ecc399d78f7e5",
+ "value": "Upload file runs/Nov27_19-14-12_8af7ca6e45dd/1669576736.3078728/events.out.tfevents.1669576736.8af7ca6e45dd.77.3: 100%"
+ }
+ },
+ "664e934211bb4356ae5426686f0035b3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "67627aa46685425fba1b801c25d8f5c0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "679aadea6b11431682f884b5ef26c0d3": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "69dfaff72d6c45aabdbd920709914a94": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6a724ac6378641889ebf41de6d6885d4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ac44a05a3ac442f78082e6387090a984",
+ "placeholder": "​",
+ "style": "IPY_MODEL_94ec073846444cf6bc988e00b4b8bbce",
+ "value": " 5.60k/5.60k [00:03<00:00, 760B/s]"
+ }
+ },
+ "6bc673e8cebe4c28bc7fb967615bed9a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d27a766c98bf4b858d145d88c69d34f6",
+ "max": 898823,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_67627aa46685425fba1b801c25d8f5c0",
+ "value": 898823
+ }
+ },
+ "6ff11cd026154544bee3ea10ceff2c2d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "75149305e7614e0b84cbebb12fc7340b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "7bf2ca5db1b14122a6a781df43c12acd": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "80d4b0bdb13e444a84b3ccebb6f7eeb0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "80ed1d76abc34b0a9d95d937eae6b626": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_75149305e7614e0b84cbebb12fc7340b",
+ "placeholder": "​",
+ "style": "IPY_MODEL_f3fd3ead9fb44d0d9616d89b1992c7ba",
+ "value": "\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. "
+ }
+ },
+ "83d334d4b71e4c07a1fc3dac8115f948": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "867595abfc9c4dd28a19346afb584534": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "8916adf78ef54b1b80e04a3a4f9bdf8c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "8a1d2e60bee942129dad6a705ed03aa5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "CheckboxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "CheckboxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "CheckboxView",
+ "description": "Add token as git credential?",
+ "description_tooltip": null,
+ "disabled": false,
+ "indent": true,
+ "layout": "IPY_MODEL_8916adf78ef54b1b80e04a3a4f9bdf8c",
+ "style": "IPY_MODEL_a6bd07e3118f42e79e1b3d7675dd28e3",
+ "value": true
+ }
+ },
+ "8a3d504e7bab45289110d16a637b5cab": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "90697bae783b45aeaf1f448d31e3b4c5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "92023e14dbcf4c218f338c926e40ae14": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "94ec073846444cf6bc988e00b4b8bbce": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "9bd09f0209b34586a8e52e549371dc9a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9c73476e79a84b1a9361842441c52d53": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_05aec460b82241ad9da702e6398f83a9",
+ "max": 456318,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_38fb2ec3ed86413bacf3213f71cbe4cd",
+ "value": 456318
+ }
+ },
+ "9e24fad5fa2244efb3789fd73f04780a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a68722b5ccb144e2bca404b7cd00cfcb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_47f89064d61442caba4adf13852b1708",
+ "placeholder": "​",
+ "style": "IPY_MODEL_5168fe5634ee4077a558b7328f3a1dbc",
+ "value": " 899k/899k [00:00<00:00, 2.92MB/s]"
+ }
+ },
+ "a6bd07e3118f42e79e1b3d7675dd28e3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "a6f0d0297c6347c9a271bf33c27d3e8e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ButtonModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ButtonModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ButtonView",
+ "button_style": "",
+ "description": "Login",
+ "disabled": false,
+ "icon": "",
+ "layout": "IPY_MODEL_14946c0a0b124448aec12ab62adecee9",
+ "style": "IPY_MODEL_c7630aea76ff4160a20578c22f8e97e8",
+ "tooltip": ""
+ }
+ },
+ "ac44a05a3ac442f78082e6387090a984": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ad906e312a214064ab07fbc101dd38a8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_8a3d504e7bab45289110d16a637b5cab",
+ "placeholder": "​",
+ "style": "IPY_MODEL_18c3aea650934b52abbd1a54ab659581",
+ "value": " 1/1 [00:00<00:00, 9.34ba/s]"
+ }
+ },
+ "afa8052f63af4e2889921afbf6966f97": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "b3c8ba9d9dba4a91b59cd80c9613df72": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_23233289ad584854ae941a706b940529",
+ "max": 1625270765,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_384c726225514427b5842166b93eea50",
+ "value": 1625270765
+ }
+ },
+ "b5bb11c9831343aaba8f762c96458ba8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2c8fe9936b544b14984723e82b1106a1",
+ "placeholder": "​",
+ "style": "IPY_MODEL_365047e08ee64faba80eb1ad825bca1b",
+ "value": " 1.63G/1.63G [00:28<00:00, 32.1MB/s]"
+ }
+ },
+ "b8ad8216b8df4dfb9f87d82824c65087": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "b8b0c77876a0404db627bac733d028e8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0c4d50cf8f8d425e86960bc2dc269c89",
+ "placeholder": "​",
+ "style": "IPY_MODEL_01c98b14c07d4258aab7671240838ef6",
+ "value": " 1.58k/1.58k [00:00<00:00, 30.0kB/s]"
+ }
+ },
+ "ba63044392144348b8e4c30869643010": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ecbbff87ffa1445e8946155b04f7cc0d",
+ "placeholder": "​",
+ "style": "IPY_MODEL_80d4b0bdb13e444a84b3ccebb6f7eeb0",
+ "value": " 1.36M/1.36M [00:00<00:00, 2.65MB/s]"
+ }
+ },
+ "bd4317d0cace4fa8a9d4e6f55643457f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_5468607c66ac4a5d893b66de7803a1da",
+ "placeholder": "​",
+ "style": "IPY_MODEL_ec07fb7fa6754fe3ad81d7e8a128fac3",
+ "value": "
Copy a token from your Hugging Face\ntokens page and paste it below.
Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file. "
+ }
+ },
+ "bd84f71efa3942b69c337203376d6f9d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "bdfff319aabb4945839b4005998a33f6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_0e829cb1baaa4f328c81962b8387d7b2",
+ "IPY_MODEL_cd5a450b5aa64a26b0bce472d9cb3876",
+ "IPY_MODEL_ad906e312a214064ab07fbc101dd38a8"
+ ],
+ "layout": "IPY_MODEL_529be118e3874e89aa14be376861b9e6"
+ }
+ },
+ "c1aa4ce82ce44a6fbe342d6f9d27ace3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "c38b3a29bdb24edf9f9ffc2a1d7ea136": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "VBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "VBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "VBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_bd4317d0cace4fa8a9d4e6f55643457f",
+ "IPY_MODEL_1458810480da42cc81793be5af19d9fd",
+ "IPY_MODEL_8a1d2e60bee942129dad6a705ed03aa5",
+ "IPY_MODEL_a6f0d0297c6347c9a271bf33c27d3e8e",
+ "IPY_MODEL_80ed1d76abc34b0a9d95d937eae6b626"
+ ],
+ "layout": "IPY_MODEL_3b9d888697984453978d8b82e167a7cd"
+ }
+ },
+ "c6a5f491bb4c4136bcb5f90d3365bd5f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_03c8bdaa055e465f8a941ff333767409",
+ "placeholder": "​",
+ "style": "IPY_MODEL_664e934211bb4356ae5426686f0035b3",
+ "value": "Downloading: 100%"
+ }
+ },
+ "c6b05ef0ab714f6ebcb36f1ae3cd9706": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c7630aea76ff4160a20578c22f8e97e8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ButtonStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ButtonStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "button_color": null,
+ "font_weight": ""
+ }
+ },
+ "c80b42c6b5c04f4e9452c7af595f1d2c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "cb513a3c13dd4afa9e9967ac18cbe3c9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "cd5a450b5aa64a26b0bce472d9cb3876": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_69dfaff72d6c45aabdbd920709914a94",
+ "max": 1,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_47e1811ef6784f808202d973b364ec34",
+ "value": 1
+ }
+ },
+ "d27a766c98bf4b858d145d88c69d34f6": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d2e8b31a5ff34826a0a9add966b3a612": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_522be447cd3a49e5abc09c438405dd2c",
+ "IPY_MODEL_179dd0a736aa470a993585febe5c1462",
+ "IPY_MODEL_4e3e2875eb2b47abbdfd0994a1a1ab77"
+ ],
+ "layout": "IPY_MODEL_56ac28edb6ca4415ba964f42d4d27bed"
+ }
+ },
+ "d7c1ac4f603f4a518679ef85e3b1224a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "df0b2994481f47568d388440024dff5a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e07d939742d54ac29c8f8e00b7af5604": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e38a776b6c1b4a269af32e38efde579c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e6da8f1c969c4116b54e964b78eeacfe": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_66292eb8434a4ce6a6d87b80c1a5d5cf",
+ "IPY_MODEL_51ecb48b3aeb41cca1b2544aaa6d4297",
+ "IPY_MODEL_227f48e8b0c54dedafe8837de08c046b"
+ ],
+ "layout": "IPY_MODEL_9bd09f0209b34586a8e52e549371dc9a"
+ }
+ },
+ "ec07fb7fa6754fe3ad81d7e8a128fac3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ecbbff87ffa1445e8946155b04f7cc0d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ef09742724b34b75b051ac54db2383ed": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "ef9b130ff1264814bb2f80c597466689": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f2d03ae9392b47fb9c0ddf08097a9651": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e38a776b6c1b4a269af32e38efde579c",
+ "max": 5735,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_39e1026c224a4b7689d60ab3d354fe50",
+ "value": 5735
+ }
+ },
+ "f3fd3ead9fb44d0d9616d89b1992c7ba": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "f8ee3ffd41f043e6a69441425bf9e8eb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_04e7b764ddc84f82be0c8d770b917338",
+ "placeholder": "​",
+ "style": "IPY_MODEL_32b08866ffec461ebaec8ea1e31c6214",
+ "value": "Downloading: 100%"
+ }
+ },
+ "fa597dbb89aa4f5fac6cc6e0a9859d59": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "fd96d7b076b841df9b3f59f2906e3e2e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ }
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}