File size: 2,435 Bytes
8795149
 
 
 
 
ab4986a
9a08573
 
8795149
2ca3aaa
deaf77e
2ca3aaa
 
deaf77e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ca3aaa
deaf77e
 
 
 
 
2ca3aaa
deaf77e
2ca3aaa
deaf77e
2ca3aaa
 
 
 
 
 
 
 
deaf77e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
language:
- he
library_name: transformers
pipeline_tag: token-classification
datasets:
- HeTree/MevakerConcSen
---
## Hebrew Conclusion Extraction Model (based on token classification)

#### How to use
```python
from transformers import  RobertaTokenizerFast, AutoModelForTokenClassification
from datasets  import load_dataset

def split_into_windows(examples):
    return {'sentences': [examples['sentence']], 'labels': [examples["label"]]}

def concatenate_dict_value(dict_obj):
    concatenated_dict = {}
    for key, value in dict_obj.items():
        flattened_list = []
        for sublist in value:
            if len(flattened_list) + len(sublist) <= 512:
                for item in sublist:
                    flattened_list.append(item)
            else:
                print("Not all sentences were processed due to length")
                break
        concatenated_dict[key] = flattened_list
    return concatenated_dict

def tokenize_and_align_labels(examples):
    tokenized_inputs = tokenizer(examples["sentences"], truncation=True, max_length=512)
    tokeized_inp_concat = concatenate_dict_value(tokenized_inputs)
    tokenized_inputs["input_ids"] = tokeized_inp_concat['input_ids']
    tokenized_inputs["attention_mask"] = tokeized_inp_concat['attention_mask']
    word_ids = tokenized_inputs["input_ids"]
    labels = []
    count = 0
    for word_idx in word_ids:
        if word_idx == 2:
            labels.append(examples[f"labels"][count])
            count = count + 1
        else:
            labels.append(-100)
    tokenized_inputs["labels"] = labels
    return tokenized_inputs

model = AutoModelForTokenClassification.from_pretrained('HeTree/HeConE') 
tokenizer = RobertaTokenizerFast.from_pretrained('HeTree/HeConE')
raw_dataset = load_dataset('HeTree/MevakerConcSen')
window_size = 5
raw_dataset_window = raw_dataset.map(split_into_windows, batched=True, batch_size=window_size, remove_columns=raw_dataset['train'].column_names)
tokenized_dataset = raw_dataset_window.map(tokenize_and_align_labels, batched=False)
```

### Citing

If you use HeConE in your research, please cite [HeRo: RoBERTa and Longformer Hebrew Language Models](http://arxiv.org/abs/2304.11077).
```
@article{shalumov2023hero,
      title={HeRo: RoBERTa and Longformer Hebrew Language Models}, 
      author={Vitaly Shalumov and Harel Haskey},
      year={2023},
      journal={arXiv:2304.11077},
}
```