vitvit commited on
Commit
ca82036
1 Parent(s): e6c4c2c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -13,11 +13,6 @@ license: apache-2.0
13
  ```python
14
  from sentence_transformers import CrossEncoder
15
  import numpy as np
16
-
17
- # Function that applies sigmoid to a score
18
- def sigmoid(x):
19
- return 1 / (1 + np.exp(-x))
20
-
21
  model = CrossEncoder('HeTree/HeCross')
22
 
23
  # Scores (already after sigmoid)
@@ -31,6 +26,11 @@ You can use the model also directly with Transformers library (without SentenceT
31
  ```python
32
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
33
  import torch
 
 
 
 
 
34
  model = AutoModelForSequenceClassification.from_pretrained('HeTree/HeCross')
35
  tokenizer = AutoTokenizer.from_pretrained('HeTree/HeCross')
36
  features = tokenizer(['כמה אנשים חיים בברלין?', 'כמה אנשים חיים בברלין?'],
 
13
  ```python
14
  from sentence_transformers import CrossEncoder
15
  import numpy as np
 
 
 
 
 
16
  model = CrossEncoder('HeTree/HeCross')
17
 
18
  # Scores (already after sigmoid)
 
26
  ```python
27
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
28
  import torch
29
+
30
+ # Function that applies sigmoid to a score
31
+ def sigmoid(x):
32
+ return 1 / (1 + np.exp(-x))
33
+
34
  model = AutoModelForSequenceClassification.from_pretrained('HeTree/HeCross')
35
  tokenizer = AutoTokenizer.from_pretrained('HeTree/HeCross')
36
  features = tokenizer(['כמה אנשים חיים בברלין?', 'כמה אנשים חיים בברלין?'],