HelgeKn commited on
Commit
9b8f7cf
1 Parent(s): 0a374f8

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ datasets:
9
+ - HelgeKn/SATHAME-generator-train
10
+ metrics:
11
+ - accuracy
12
+ widget:
13
+ - text: 'Then , at a signal , the ringers begin varying the order in which the bells
14
+ sound without altering the steady rhythm of the striking . '
15
+ - text: 'The others here today live elsewhere . '
16
+ - text: 'Mr. Hammond worries that old age and the flightiness of youth will diminish
17
+ the ranks of the East Anglian group that keeps the Aslacton bells pealing . '
18
+ - text: '`` So crunch , crunch , crunch , bang , bang , bang -- here come the ringers
19
+ from above , making a very obvious exit while the congregation is at prayer ,
20
+ `` he says . '
21
+ pipeline_tag: text-classification
22
+ inference: true
23
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
24
+ ---
25
+
26
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
27
+
28
+ This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [HelgeKn/SATHAME-generator-train](https://huggingface.co/datasets/HelgeKn/SATHAME-generator-train) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.
29
+
30
+ The model has been trained using an efficient few-shot learning technique that involves:
31
+
32
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
33
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
34
+
35
+ ## Model Details
36
+
37
+ ### Model Description
38
+ - **Model Type:** SetFit
39
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
40
+ - **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
41
+ - **Maximum Sequence Length:** 512 tokens
42
+ - **Number of Classes:** 4 classes
43
+ - **Training Dataset:** [HelgeKn/SATHAME-generator-train](https://huggingface.co/datasets/HelgeKn/SATHAME-generator-train)
44
+ <!-- - **Language:** Unknown -->
45
+ <!-- - **License:** Unknown -->
46
+
47
+ ### Model Sources
48
+
49
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
50
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
51
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
52
+
53
+ ### Model Labels
54
+ | Label | Examples |
55
+ |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
56
+ | 1 | <ul><li>'The art of change-ringing is peculiar to the English , and , like most English peculiarities , unintelligible to the rest of the world . '</li><li>'Of all scenes that evoke rural England , this is one of the loveliest : An ancient stone church stands amid the fields , the sound of bells cascading from its tower , calling the faithful to evensong . '</li><li>'In the tower , five men and women pull rhythmically on ropes attached to the same five bells that first sounded here in 1614 . '</li></ul> |
57
+ | 0 | <ul><li>'The parishioners of St. Michael and All Angels stop to chat at the church door , as members here always have . '</li><li>'History , after all , is not on his side . '</li><li>"According to a nationwide survey taken a year ago , nearly a third of England 's church bells are no longer rung on Sundays because there is no one to ring them . "</li></ul> |
58
+ | 2 | <ul><li>'Now , only one local ringer remains : 64-year-old Derek Hammond . '</li><li>'The others here today live elsewhere . '</li><li>'No one speaks , and the snaking of the ropes seems to make as much sound as the bells themselves , muffled by the ceiling . '</li></ul> |
59
+ | 3 | <ul><li>'`` To ring for even one service at this tower , we have to scrape , `` says Mr. Hammond , a retired water-authority worker . `` '</li><li>'When their changes are completed , and after they have worked up a sweat , ringers often skip off to the local pub , leaving worship for others below . '</li><li>"Two years ago , the Rev. Jeremy Hummerstone , vicar of Great Torrington , Devon , got so fed up with ringers who did n't attend service he sacked the entire band ; the ringers promptly set up a picket line in protest . "</li></ul> |
60
+
61
+ ## Uses
62
+
63
+ ### Direct Use for Inference
64
+
65
+ First install the SetFit library:
66
+
67
+ ```bash
68
+ pip install setfit
69
+ ```
70
+
71
+ Then you can load this model and run inference.
72
+
73
+ ```python
74
+ from setfit import SetFitModel
75
+
76
+ # Download from the 🤗 Hub
77
+ model = SetFitModel.from_pretrained("HelgeKn/Testing-blub")
78
+ # Run inference
79
+ preds = model("The others here today live elsewhere . ")
80
+ ```
81
+
82
+ <!--
83
+ ### Downstream Use
84
+
85
+ *List how someone could finetune this model on their own dataset.*
86
+ -->
87
+
88
+ <!--
89
+ ### Out-of-Scope Use
90
+
91
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
92
+ -->
93
+
94
+ <!--
95
+ ## Bias, Risks and Limitations
96
+
97
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
98
+ -->
99
+
100
+ <!--
101
+ ### Recommendations
102
+
103
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
104
+ -->
105
+
106
+ ## Training Details
107
+
108
+ ### Training Set Metrics
109
+ | Training set | Min | Median | Max |
110
+ |:-------------|:----|:-------|:----|
111
+ | Word count | 8 | 27.275 | 45 |
112
+
113
+ | Label | Training Sample Count |
114
+ |:------|:----------------------|
115
+ | 0 | 10 |
116
+ | 1 | 10 |
117
+ | 2 | 10 |
118
+ | 3 | 10 |
119
+
120
+ ### Training Hyperparameters
121
+ - batch_size: (16, 16)
122
+ - num_epochs: (2, 2)
123
+ - max_steps: -1
124
+ - sampling_strategy: oversampling
125
+ - num_iterations: 20
126
+ - body_learning_rate: (2e-05, 2e-05)
127
+ - head_learning_rate: 2e-05
128
+ - loss: CosineSimilarityLoss
129
+ - distance_metric: cosine_distance
130
+ - margin: 0.25
131
+ - end_to_end: False
132
+ - use_amp: False
133
+ - warmup_proportion: 0.1
134
+ - seed: 42
135
+ - eval_max_steps: -1
136
+ - load_best_model_at_end: False
137
+
138
+ ### Training Results
139
+ | Epoch | Step | Training Loss | Validation Loss |
140
+ |:-----:|:----:|:-------------:|:---------------:|
141
+ | 0.01 | 1 | 0.2799 | - |
142
+ | 0.5 | 50 | 0.1155 | - |
143
+ | 1.0 | 100 | 0.0023 | - |
144
+ | 1.5 | 150 | 0.0008 | - |
145
+ | 2.0 | 200 | 0.0017 | - |
146
+
147
+ ### Framework Versions
148
+ - Python: 3.9.13
149
+ - SetFit: 1.0.1
150
+ - Sentence Transformers: 2.2.2
151
+ - Transformers: 4.36.0
152
+ - PyTorch: 2.1.1+cpu
153
+ - Datasets: 2.15.0
154
+ - Tokenizers: 0.15.0
155
+
156
+ ## Citation
157
+
158
+ ### BibTeX
159
+ ```bibtex
160
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
161
+ doi = {10.48550/ARXIV.2209.11055},
162
+ url = {https://arxiv.org/abs/2209.11055},
163
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
164
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
165
+ title = {Efficient Few-Shot Learning Without Prompts},
166
+ publisher = {arXiv},
167
+ year = {2022},
168
+ copyright = {Creative Commons Attribution 4.0 International}
169
+ }
170
+ ```
171
+
172
+ <!--
173
+ ## Glossary
174
+
175
+ *Clearly define terms in order to be accessible across audiences.*
176
+ -->
177
+
178
+ <!--
179
+ ## Model Card Authors
180
+
181
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
182
+ -->
183
+
184
+ <!--
185
+ ## Model Card Contact
186
+
187
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
188
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "C:\\Users\\Man_f/.cache\\torch\\sentence_transformers\\sentence-transformers_paraphrase-mpnet-base-v2\\",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.36.0",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f26c1d0b86eb06ff7f21cd04b0fdfd582dd4eaec20d60922a2babf65ba91fca
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2821fd78958bdd8f4d95311a4be3a4ac873877a5e8d50eb3d23445d323fd20f0
3
+ size 13824
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff