File size: 20,666 Bytes
57bad03 aca9db9 57bad03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 |
---
library_name: transformers
language:
- aa
- aai
- aau
- ab
- abi
- acd
- ace
- acf
- ach
- acn
- acr
- ade
- adj
- ady
- aeu
- aey
- af
- afh
- agd
- agn
- agu
- ahk
- aia
- ak
- akh
- akl
- akp
- alj
- alp
- alq
- alt
- alz
- am
- ame
- ami
- amk
- amu
- an
- ang
- ann
- anp
- anv
- aoz
- apr
- apu
- ar
- arc
- as
- aso
- ast
- atg
- atj
- atq
- aui
- auy
- av
- avk
- avn
- avu
- awa
- awb
- awx
- az
- azg
- azz
- ba
- bal
- ban
- bar
- bas
- bav
- bba
- bbo
- bbr
- bcl
- bcw
- be
- bef
- beh
- bem
- bep
- bex
- bfa
- bfd
- bfo
- bg
- bgr
- bhl
- bho
- bhz
- bi
- bib
- bik
- bim
- biv
- bjr
- bjv
- bku
- bkv
- blh
- blt
- blz
- bm
- bmh
- bmk
- bmq
- bmu
- bmv
- bn
- bnp
- bo
- boj
- bom
- bov
- box
- bpr
- bps
- bpy
- bqc
- bqj
- bqp
- br
- bru
- brx
- bs
- bss
- btd
- bth
- bto
- bts
- btt
- btx
- bua
- bud
- bug
- buk
- bus
- bvy
- bwq
- bwu
- byn
- bzd
- bzh
- bzj
- bzt
- ca
- caa
- cab
- cac
- cak
- cay
- cbk
- cce
- cco
- ce
- ceb
- cfm
- cgc
- ch
- chf
- chm
- chq
- chr
- chy
- chz
- cjk
- cjo
- cjp
- cjv
- cko
- cle
- cme
- cmo
- cmr
- cnh
- cni
- cnl
- cnt
- cnw
- co
- cok
- cop
- cot
- cpa
- cpu
- cr
- crh
- crn
- crs
- crx
- cs
- csb
- csk
- cso
- csy
- cta
- ctd
- ctp
- ctu
- cu
- cuc
- cui
- cuk
- cut
- cux
- cv
- cwe
- cwt
- cy
- cya
- czt
- da
- daa
- dad
- dag
- dah
- de
- ded
- dga
- dgi
- dig
- dik
- din
- diq
- dje
- djk
- dng
- dni
- dnj
- dob
- dop
- drt
- dsb
- dsh
- dtp
- dug
- dv
- dws
- dww
- dyi
- dyo
- dyu
- dz
- ee
- efi
- egl
- el
- emi
- en
- enm
- eo
- es
- ess
- et
- eu
- ext
- fa
- fai
- fal
- far
- ff
- fi
- fil
- fj
- fkv
- fo
- fon
- for
- fr
- frd
- frm
- fro
- frp
- frr
- fur
- fy
- ga
- gag
- gah
- gaw
- gbm
- gcf
- gd
- gde
- gej
- gfk
- ghs
- gil
- gkn
- gl
- glk
- gn
- gnd
- gng
- gog
- gor
- gos
- got
- gqr
- grc
- gsw
- gu
- guc
- gud
- guh
- guo
- gur
- guw
- gux
- gv
- gvf
- gvl
- gwi
- gwr
- gym
- gyr
- ha
- hag
- haw
- hay
- hbo
- hch
- he
- heh
- hi
- hif
- hig
- hil
- hla
- hlt
- hmn
- hne
- hnj
- hnn
- hns
- hoc
- hot
- hr
- hrx
- hsb
- ht
- hu
- hui
- hus
- hvn
- hwc
- hy
- hyw
- hz
- ia
- iba
- icr
- id
- ie
- ifa
- ifb
- ife
- ifk
- ifu
- ify
- ig
- ign
- igs
- ii
- ik
- ilo
- imo
- inh
- ino
- io
- iou
- ipi
- iri
- irk
- iry
- is
- it
- itv
- iu
- ium
- ixl
- izh
- izr
- ja
- jaa
- jac
- jam
- jbo
- jbu
- jdt
- jmc
- jpa
- jun
- jv
- jvn
- ka
- kaa
- kab
- kac
- kam
- kao
- kbd
- kbm
- kbp
- kdc
- kdj
- kdl
- kdn
- kea
- kek
- ken
- keo
- ker
- keu
- kew
- kez
- kg
- kgf
- kgk
- kha
- khz
- ki
- kia
- kj
- kjb
- kje
- kjh
- kjs
- kk
- kki
- kkj
- kl
- kle
- km
- kma
- kmb
- kmg
- kmh
- kmo
- kmu
- kn
- kne
- knj
- knk
- kno
- kog
- kok
- kpf
- kpg
- kpr
- kpw
- kpz
- kqe
- kqf
- kqp
- kqw
- kr
- krc
- kri
- krj
- krl
- kru
- ks
- ksb
- ksh
- ksr
- ktb
- ktj
- ku
- kub
- kud
- kue
- kum
- kus
- kv
- kvn
- kw
- kwf
- kxc
- kxm
- ky
- kyc
- kyf
- kyg
- kyq
- kzf
- la
- laa
- lac
- lad
- lah
- las
- law
- lb
- lbe
- lcm
- ldn
- lee
- lef
- lem
- leu
- lew
- lex
- lez
- lfn
- lg
- lgg
- lhu
- li
- lia
- lid
- lif
- lij
- lip
- liv
- ljp
- lkt
- lld
- lln
- lme
- lmo
- ln
- lnd
- lo
- lob
- lok
- lon
- lou
- lrc
- lsi
- lt
- lua
- luc
- luo
- lus
- lut
- luy
- lv
- lzz
- maa
- mad
- mag
- mai
- maj
- mak
- mam
- maq
- mau
- maw
- maz
- mbb
- mbf
- mbt
- mcb
- mcp
- mcu
- mda
- mdf
- med
- mee
- meh
- mek
- men
- meq
- mfe
- mfh
- mfi
- mfk
- mfq
- mfy
- mg
- mgd
- mgm
- mgo
- mh
- mhi
- mhl
- mhx
- mhy
- mi
- mib
- mic
- mie
- mif
- mig
- mih
- mil
- mio
- mit
- mix
- miy
- miz
- mjc
- mk
- mks
- ml
- mlh
- mlp
- mmo
- mmx
- mn
- mna
- mnb
- mnf
- mnh
- mni
- mnr
- mnw
- mo
- moa
- mog
- moh
- mop
- mor
- mos
- mox
- mpg
- mpm
- mpt
- mpx
- mqb
- mqj
- mr
- mrj
- mrw
- ms
- msm
- mt
- mta
- muh
- mux
- muy
- mva
- mvp
- mvv
- mwc
- mwl
- mwm
- mwv
- mww
- mxb
- mxt
- my
- myb
- myk
- myu
- myv
- myw
- myx
- mzk
- mzm
- mzn
- mzw
- mzz
- na
- naf
- nak
- nap
- nas
- nb
- nca
- nch
- ncj
- ncl
- ncu
- nd
- nds
- ndz
- ne
- neb
- new
- nfr
- ng
- ngt
- ngu
- nhe
- nhg
- nhi
- nhn
- nhu
- nhw
- nhx
- nhy
- nia
- nif
- nii
- nij
- nim
- nin
- niu
- njm
- nl
- nlc
- nlv
- nmz
- nn
- nnb
- nnh
- nnw
- no
- nog
- non
- nop
- not
- nou
- nov
- npl
- npy
- nqo
- nr
- nsn
- nso
- nss
- nst
- nsu
- ntm
- ntp
- ntr
- nuj
- nus
- nuy
- nv
- nwb
- nwi
- ny
- nyf
- nyn
- nyo
- nyy
- nzi
- oar
- obo
- oc
- ofs
- oj
- oku
- okv
- old
- om
- omw
- ood
- opm
- or
- orv
- os
- osp
- ota
- ote
- otk
- otm
- otn
- otq
- ozm
- pa
- pab
- pad
- pag
- pai
- pal
- pam
- pao
- pap
- pau
- pbi
- pbl
- pcd
- pck
- pcm
- pdc
- pfl
- phn
- pi
- pib
- pih
- pio
- pis
- pkb
- pl
- pls
- plw
- pmf
- pms
- pmy
- pne
- pnt
- poe
- poh
- pot
- ppk
- ppl
- prf
- prg
- ps
- pt
- ptp
- ptu
- pwg
- pww
- quc
- qya
- rai
- rap
- rav
- rej
- rhg
- rif
- rim
- rm
- rmy
- rn
- ro
- rom
- rop
- rro
- ru
- rue
- rug
- rup
- rw
- rwo
- sa
- sab
- sah
- sas
- sat
- sba
- sbd
- sbl
- sc
- scn
- sco
- sd
- sda
- se
- seh
- ses
- sg
- sgb
- sgs
- sgw
- sgz
- sh
- shi
- shk
- shn
- shs
- shy
- si
- sig
- sil
- sjn
- sk
- skr
- sl
- sld
- sll
- sm
- sma
- smk
- sml
- smn
- sn
- snc
- snp
- snw
- so
- soy
- spl
- spp
- sps
- sq
- sr
- srm
- srn
- srq
- ss
- ssd
- ssx
- st
- stn
- stp
- stq
- su
- sue
- suk
- sur
- sus
- suz
- sv
- sw
- swg
- swp
- sxb
- sxn
- syc
- syl
- syr
- szb
- szl
- ta
- tab
- tac
- taj
- taq
- tbc
- tbl
- tbo
- tbz
- tcs
- tcy
- te
- tem
- teo
- ter
- tet
- tfr
- tg
- tgo
- tgp
- th
- thk
- thv
- ti
- tig
- tik
- tim
- tk
- tkl
- tl
- tlb
- tlf
- tlh
- tlj
- tlx
- tly
- tmc
- tmh
- tmr
- tn
- to
- toh
- toi
- toj
- tpa
- tpi
- tpm
- tpw
- tpz
- tr
- trc
- trn
- trq
- trs
- trv
- ts
- tsw
- tt
- ttc
- tte
- ttr
- tts
- tuc
- tuf
- tum
- tvl
- tw
- twb
- twu
- txa
- ty
- tyj
- tyv
- tzh
- tzj
- tzl
- tzm
- tzo
- ubr
- ubu
- udm
- udu
- ug
- uk
- umb
- ur
- usa
- usp
- uvl
- uz
- vag
- ve
- vec
- vep
- vi
- viv
- vls
- vmw
- vmy
- vo
- vot
- vun
- wa
- wae
- waj
- wal
- wap
- war
- wbm
- wbp
- wed
- wmt
- wmw
- wnc
- wnu
- wo
- wob
- wsk
- wuv
- xal
- xcl
- xed
- xh
- xmf
- xog
- xon
- xrb
- xsb
- xsi
- xsm
- xsr
- xtd
- xtm
- xuo
- yal
- yam
- yaq
- yaz
- yby
- ycl
- ycn
- yi
- yli
- yml
- yo
- yon
- yua
- yut
- yuw
- za
- zam
- zap
- zea
- zgh
- zh
- zia
- zom
- zu
- zyp
- zza
tags:
- translation
- opus-mt-tc-bible
license: apache-2.0
model-index:
- name: opus-mt-tc-bible-big-deu_eng_fra_por_spa-mul
results:
- task:
name: Translation multi-multi
type: translation
args: multi-multi
dataset:
name: tatoeba-test-v2020-07-28-v2023-09-26
type: tatoeba_mt
args: multi-multi
metrics:
- name: BLEU
type: bleu
value: 29.2
- name: chr-F
type: chrf
value: 0.55024
---
# opus-mt-tc-bible-big-deu_eng_fra_por_spa-mul
## Table of Contents
- [Model Details](#model-details)
- [Uses](#uses)
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
- [Training](#training)
- [Evaluation](#evaluation)
- [Citation Information](#citation-information)
- [Acknowledgements](#acknowledgements)
## Model Details
Neural machine translation model for translating from unknown (deu+eng+fra+por+spa) to Multiple languages (mul).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
**Model Description:**
- **Developed by:** Language Technology Research Group at the University of Helsinki
- **Model Type:** Translation (transformer-big)
- **Release**: 2024-05-30
- **License:** Apache-2.0
- **Language(s):**
- Source Language(s): deu eng fra por spa
- Target Language(s): aai aar aau abi abk acd ace acf ach acm acn acr ade adj ady aeu aey afb afh_Latn afr agd agn agu ahk aia aka akh akl_Latn akp alj aln alp alq alt alz ame amh ami ami_Latn amk amu amu_Latn ang_Latn ann anp anv aoz apc apr apu ara arc arg arq arz asm aso ast atg atj atq aui auy ava avk_Latn avn avu awa awb awx aze_Cyrl aze_Latn azg azz azz_Latn bak bal bal_Latn bam bam_Latn ban bar bas bav bba bbo bbr bcl bcw bef beh bel bem ben bep bex bfa bfd bfo bgr bhl bho bhz bib bik bim bis biv bjr bjv bku bkv blh blt blz bmh bmk bmq bmu bmv bnp bod boj bom_Latn bos_Cyrl bos_Latn bov box bpr bps bpy bqc bqj bqp bre bru brx bss btd bth bto bts btt btx bua bud bug buk bul bus bvy_Latn bwq bwu byn bzd bzh bzj bzt_Latn caa cab cac cak cak_Latn cat cay cbk_Latn cce cco ceb ces cfm cgc cha che chf chm chq chq_Latn chr chu chv chy chz cjk cjk_Latn cjo cjp cjp_Latn cjv cjy_Hans cjy_Hant ckb cko cle cme cmn cmn_Hans cmn_Hant cmo cmr cnh cnh_Latn cni cni_Latn cnl cnr cnr_Latn cnt cnw cok cop cop_Copt cor cos cot cpa cpu cre cre_Latn crh crn crs crx csb csb_Latn csk cso csy cta ctd ctp ctu cuc cui cuk cut cux cwe cwt cya cym czt daa dad dag_Latn dah dan ded deu dga dgi dig dik din diq div dje djk djk_Latn dng dni dnj dob dop dop_Latn drt_Latn dsb dsh dtp dty dug dws_Latn dww dyi dyo dyu dzo efi egl ell emi eng enm_Latn epo ess est eus ewe ext fai fal fao far fas fij fil fin fkv_Latn fon for fra frd frm_Latn fro_Latn frp frr fry fuc ful fur gag gah gaw gbm gcf gcf_Latn gde gej gfk ghs gil gkn gla gle glg glk glv gnd gng gog gor gos got got_Goth gqr grc grc_Grek grn gsw guc gud guh guj guo gur guw guw_Latn gux gvf gvl gwi gwr gym gyr hag hat hau hau_Latn haw hay hbo hbo_Hebr hbs hbs_Cyrl hbs_Latn hch heb heh her hif hif_Latn hig hil hin hin_Latn hla hlt hmn hne hnj hnn hns hoc hoc_Wara hot hrv hrx_Latn hsb hsn hui hun hus hus_Latn hvn hwc hye hyw hyw_Armn hyw_Latn iba ibo icr ido_Latn ifa ifb ife ifk ifu ify ign igs_Latn iii ike_Latn iku iku_Latn ile_Latn ilo imo ina_Latn ind inh inh_Latn ino iou ipi ipk iri irk iry isl ita itv ium ixl ixl_Latn izh izr jaa jaa_Bopo jaa_Hira jaa_Kana jaa_Yiii jac jak_Latn jam jav jav_Java jbo jbo_Cyrl jbo_Latn jbu jdt_Cyrl jmc jpa_Hebr jpn jun jvn kaa kab kac kal kam kan kao kas_Arab kas_Deva kat kau kaz kaz_Cyrl kbd kbm kbp kbp_Cans kbp_Ethi kbp_Geor kbp_Grek kbp_Hang kbp_Latn kbp_Mlym kbp_Yiii kdc kdj kdl kdn kea kek kek_Latn ken keo ker keu kew kez kgf kgk kha khm khz kia kik kin kir_Cyrl kjb kje kjh kjs kki kkj kle kma kmb kmg kmh kmo kmr kmu knc kne knj knk kno kog koi kok kom kon kpf kpg kpr kpv kpw kpz kqe kqf kqp kqw krc kri krj krl kru ksb ksh ksr ktb ktj kua kub kud kue kum kur_Arab kur_Cyrl kur_Latn kus kvn kwf kxc kxm kyc kyf kyg kyq kzf laa_Latn lac lad lad_Latn lah lao las lat lat_Latn lav law lbe lcm ldn_Latn lee lef lem leu lew lex lez lfn_Cyrl lfn_Latn lgg lhu lia lid lif lij lim lin lip lit liv_Latn ljp lkt lld_Latn lln lme lmo lnd lob lok lon lou_Latn lrc lsi ltz lua luc lug luo lus lut_Latn luy lzz_Latn maa mad mag mah mai maj mak mal mam mam_Latn maq mar mau maw max_Latn maz mbb mbf mbt mcb mcp mcu mda mdf med mee meh_Latn mek men meq mfe mfh mfi mfk mfq mfy mgd mgm_Latn mgo mhi mhl mhx mhy mib mic mie mif mig mih mil mio mit mix mix_Latn miy miz mjc mkd mks mlg mlh mlp mlt mmo mmx mna mnb mnf mnh mni mnr_Latn mnw moa mog moh mol mon mop mor mos mox mpg mpm mpt mpx mqb mqj mri mrj mrw msa msa_Arab msa_Latn msm mta muh mux muy mva mvp mvv_Latn mwc mwl mwm mwv mww mxb mxt mya myb myk myu myv myw myx mzk mzm mzn mzw mzz naf nak nap nas nau nav nbl nca nch ncj ncl ncu nde ndo nds ndz neb nep new nfr ngt_Latn ngu ngu_Latn nhe nhg nhg_Latn nhi nhn_Latn nhu nhw nhx nhy nia nif nii nij nim nin niu njm nlc nld nlv_Latn nmz nnb nnb_Latn nnh nno nnw nob nog non nop nor not nou nov_Latn npi npl npy nqo nsn nso nss nst_Latn nsu ntm ntp ntr nuj nus nuy nwb nwi nya nyf nyn nyo nyy nzi oar_Hebr oar_Syrc obo oci ofs_Latn oji_Latn oku okv old omw ood ood_Latn opm ori orm orv_Cyrl osp_Latn oss ota_Arab ota_Latn ota_Rohg ota_Syrc ota_Thaa ota_Yezi ote otk_Orkh otm otn otq ozm pab pad pag pai_Latn pal pam pan pan_Guru pao pap pau pbi pbl pcd pck_Latn pcm pdc pes pfl phn_Phnx pib pih pih_Latn pio pis pkb pli pls plt plw pmf pms pmy_Latn pne pnt_Grek poe poh pol por pot pot_Latn ppk ppk_Latn ppl_Latn prf prg_Latn prs ptp ptu pus pwg pww quc qya qya_Latn rai rap rav rej rhg_Latn rif_Latn rim rmy roh rom ron rop rro rue rug run rup rus rwo sab sag sah san san_Deva sas sat sat_Latn sba sbd sbl scn sco sda sdh seh ses sgb sgs sgw sgz shi shi_Latn shk shn shs_Latn shy_Latn sig sil sin sjn_Latn skr sld slk sll slv sma sme smk sml sml_Latn smn smo sna snc snd_Arab snp snw som sot soy spa spl spp sps sqi srd srm srn srp_Cyrl srq ssd ssw ssx stn stp stq sue suk sun sur sus suz swa swc swe swg swh swp sxb sxn syc syl_Sylo syr szb szl tab tac tah taj tam taq tat tbc tbl tbo tbz tcs tcy tel tem teo ter tet tfr tgk tgk_Cyrl tgk_Latn tgl tgl_Latn tgl_Tglg tgo tgp tha thk thv tig tik tim tir tkl tlb tlf tlh tlh_Latn tlj tlx tly_Latn tmc tmh tmr_Hebr tmw_Latn toh toi toi_Latn toj ton tpa tpi tpm tpw_Latn tpz trc trn trq trs trs_Latn trv tsn tso tsw ttc tte ttr tts tuc tuf tuk tuk_Latn tum tur tvl twb twi twu txa tyj_Latn tyv tzh tzj tzl tzl_Latn tzm_Latn tzm_Tfng tzo ubr ubu udm udu uig uig_Arab uig_Cyrl uig_Latn ukr umb urd usa usp usp_Latn uvl uzb_Cyrl uzb_Latn vag vec ven vep vie viv vls vmw vmy vol_Latn vot vot_Latn vro vun wae waj wal wap war wbm wbp wed wln wmt wmw wnc wnu wob wol wsk wuu wuv xal xcl_Armn xcl_Latn xed xho xmf xog xon xrb xsb xsi xsm xsr xtd xtm xuo yal yam yaq yaz yby ycl ycn yid yli yml yon yor yua yue_Hans yue_Hant yut yuw zam zap zea zgh zha zia zlm_Arab zlm_Latn zom zsm_Arab zsm_Latn zul zyp zza
- **Original Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-mul/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip)
- **Resources for more information:**
- [OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/deu%2Beng%2Bfra%2Bpor%2Bspa-mul/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-05-30)
- [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
- [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian)
- [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/)
- [HPLT bilingual data v1 (as part of the Tatoeba Translation Challenge dataset)](https://hplt-project.org/datasets/v1)
- [A massively parallel Bible corpus](https://aclanthology.org/L14-1215/)
This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>aai<<`
## Uses
This model can be used for translation and text-to-text generation.
## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.**
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
## How to Get Started With the Model
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
">>aai<< Replace this with text in an accepted source language.",
">>zza<< This is the second sentence."
]
model_name = "pytorch-models/opus-mt-tc-bible-big-deu_eng_fra_por_spa-mul"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-mul")
print(pipe(">>aai<< Replace this with text in an accepted source language."))
```
## Training
- **Data**: opusTCv20230926max50+bt+jhubc ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
- **Pre-processing**: SentencePiece (spm32k,spm32k)
- **Model Type:** transformer-big
- **Original MarianNMT Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-mul/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip)
- **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
## Evaluation
* [Model scores at the OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/deu%2Beng%2Bfra%2Bpor%2Bspa-mul/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-05-30)
* test set translations: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-mul/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.test.txt)
* test set scores: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-mul/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| multi-multi | tatoeba-test-v2020-07-28-v2023-09-26 | 0.55024 | 29.2 | 10000 | 75838 |
## Citation Information
* Publications: [Democratizing neural machine translation with OPUS-MT](https://doi.org/10.1007/s10579-023-09704-w) and [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```bibtex
@article{tiedemann2023democratizing,
title={Democratizing neural machine translation with {OPUS-MT}},
author={Tiedemann, J{\"o}rg and Aulamo, Mikko and Bakshandaeva, Daria and Boggia, Michele and Gr{\"o}nroos, Stig-Arne and Nieminen, Tommi and Raganato, Alessandro and Scherrer, Yves and Vazquez, Raul and Virpioja, Sami},
journal={Language Resources and Evaluation},
number={58},
pages={713--755},
year={2023},
publisher={Springer Nature},
issn={1574-0218},
doi={10.1007/s10579-023-09704-w}
}
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Acknowledgements
The work is supported by the [HPLT project](https://hplt-project.org/), funded by the European Union’s Horizon Europe research and innovation programme under grant agreement No 101070350. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland, and the [EuroHPC supercomputer LUMI](https://www.lumi-supercomputer.eu/).
## Model conversion info
* transformers version: 4.45.1
* OPUS-MT git hash: 0882077
* port time: Wed Oct 9 18:54:16 EEST 2024
* port machine: LM0-400-22516.local
|