Add multilingual to the language tag
Browse filesHi! A PR to add multilingual to the language tag to improve the referencing.
README.md
CHANGED
@@ -4,157 +4,122 @@ language:
|
|
4 |
- en
|
5 |
- es
|
6 |
- oc
|
|
|
|
|
7 |
tags:
|
8 |
- translation
|
9 |
- opus-mt-tc
|
10 |
-
license: cc-by-4.0
|
11 |
model-index:
|
12 |
- name: opus-mt-tc-big-en-cat_oci_spa
|
13 |
results:
|
14 |
- task:
|
15 |
-
name: Translation eng-cat
|
16 |
type: translation
|
17 |
-
|
18 |
dataset:
|
19 |
name: flores101-devtest
|
20 |
type: flores_101
|
21 |
args: eng cat devtest
|
22 |
metrics:
|
23 |
-
-
|
24 |
-
type: bleu
|
25 |
value: 41.5
|
26 |
-
|
27 |
-
|
28 |
-
type: translation
|
29 |
-
args: eng-oci
|
30 |
-
dataset:
|
31 |
-
name: flores101-devtest
|
32 |
-
type: flores_101
|
33 |
-
args: eng oci devtest
|
34 |
-
metrics:
|
35 |
-
- name: BLEU
|
36 |
-
type: bleu
|
37 |
value: 25.4
|
38 |
-
|
39 |
-
|
40 |
-
type: translation
|
41 |
-
args: eng-spa
|
42 |
-
dataset:
|
43 |
-
name: flores101-devtest
|
44 |
-
type: flores_101
|
45 |
-
args: eng spa devtest
|
46 |
-
metrics:
|
47 |
-
- name: BLEU
|
48 |
-
type: bleu
|
49 |
value: 28.1
|
|
|
50 |
- task:
|
51 |
-
name: Translation eng-spa
|
52 |
type: translation
|
53 |
-
|
54 |
dataset:
|
55 |
name: news-test2008
|
56 |
type: news-test2008
|
57 |
args: eng-spa
|
58 |
metrics:
|
59 |
-
-
|
60 |
-
type: bleu
|
61 |
value: 30.0
|
|
|
62 |
- task:
|
63 |
-
name: Translation eng-cat
|
64 |
type: translation
|
65 |
-
|
66 |
dataset:
|
67 |
name: tatoeba-test-v2021-08-07
|
68 |
type: tatoeba_mt
|
69 |
args: eng-cat
|
70 |
metrics:
|
71 |
-
-
|
72 |
-
type: bleu
|
73 |
value: 47.8
|
74 |
-
|
75 |
-
|
76 |
-
type: translation
|
77 |
-
args: eng-spa
|
78 |
-
dataset:
|
79 |
-
name: tatoeba-test-v2021-08-07
|
80 |
-
type: tatoeba_mt
|
81 |
-
args: eng-spa
|
82 |
-
metrics:
|
83 |
-
- name: BLEU
|
84 |
-
type: bleu
|
85 |
value: 57.0
|
|
|
86 |
- task:
|
87 |
-
name: Translation eng-spa
|
88 |
type: translation
|
89 |
-
|
90 |
dataset:
|
91 |
name: tico19-test
|
92 |
type: tico19-test
|
93 |
args: eng-spa
|
94 |
metrics:
|
95 |
-
-
|
96 |
-
type: bleu
|
97 |
value: 52.5
|
|
|
98 |
- task:
|
99 |
-
name: Translation eng-spa
|
100 |
type: translation
|
101 |
-
|
102 |
dataset:
|
103 |
name: newstest2009
|
104 |
type: wmt-2009-news
|
105 |
args: eng-spa
|
106 |
metrics:
|
107 |
-
-
|
108 |
-
type: bleu
|
109 |
value: 30.5
|
|
|
110 |
- task:
|
111 |
-
name: Translation eng-spa
|
112 |
type: translation
|
113 |
-
|
114 |
dataset:
|
115 |
name: newstest2010
|
116 |
type: wmt-2010-news
|
117 |
args: eng-spa
|
118 |
metrics:
|
119 |
-
-
|
120 |
-
type: bleu
|
121 |
value: 37.4
|
|
|
122 |
- task:
|
123 |
-
name: Translation eng-spa
|
124 |
type: translation
|
125 |
-
|
126 |
dataset:
|
127 |
name: newstest2011
|
128 |
type: wmt-2011-news
|
129 |
args: eng-spa
|
130 |
metrics:
|
131 |
-
-
|
132 |
-
type: bleu
|
133 |
value: 39.1
|
|
|
134 |
- task:
|
135 |
-
name: Translation eng-spa
|
136 |
type: translation
|
137 |
-
|
138 |
dataset:
|
139 |
name: newstest2012
|
140 |
type: wmt-2012-news
|
141 |
args: eng-spa
|
142 |
metrics:
|
143 |
-
-
|
144 |
-
type: bleu
|
145 |
value: 39.6
|
|
|
146 |
- task:
|
147 |
-
name: Translation eng-spa
|
148 |
type: translation
|
149 |
-
|
150 |
dataset:
|
151 |
name: newstest2013
|
152 |
type: wmt-2013-news
|
153 |
args: eng-spa
|
154 |
metrics:
|
155 |
-
-
|
156 |
-
type: bleu
|
157 |
value: 35.8
|
|
|
158 |
---
|
159 |
# opus-mt-tc-big-en-cat_oci_spa
|
160 |
|
@@ -162,7 +127,7 @@ Neural machine translation model for translating from English (en) to Catalan, O
|
|
162 |
|
163 |
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
|
164 |
|
165 |
-
* Publications: [OPUS-MT
|
166 |
|
167 |
```
|
168 |
@inproceedings{tiedemann-thottingal-2020-opus,
|
@@ -226,8 +191,8 @@ for t in translated:
|
|
226 |
print( tokenizer.decode(t, skip_special_tokens=True) )
|
227 |
|
228 |
# expected output:
|
229 |
-
#
|
230 |
-
# Ella lo
|
231 |
```
|
232 |
|
233 |
You can also use OPUS-MT models with the transformers pipelines, for example:
|
@@ -237,7 +202,7 @@ from transformers import pipeline
|
|
237 |
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-cat_oci_spa")
|
238 |
print(pipe(">>spa<< Why do you want Tom to go there with me?"))
|
239 |
|
240 |
-
# expected output:
|
241 |
```
|
242 |
|
243 |
## Benchmarks
|
@@ -265,7 +230,7 @@ print(pipe(">>spa<< Why do you want Tom to go there with me?"))
|
|
265 |
|
266 |
## Acknowledgements
|
267 |
|
268 |
-
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union
|
269 |
|
270 |
## Model conversion info
|
271 |
|
|
|
4 |
- en
|
5 |
- es
|
6 |
- oc
|
7 |
+
- multilingual
|
8 |
+
license: cc-by-4.0
|
9 |
tags:
|
10 |
- translation
|
11 |
- opus-mt-tc
|
|
|
12 |
model-index:
|
13 |
- name: opus-mt-tc-big-en-cat_oci_spa
|
14 |
results:
|
15 |
- task:
|
|
|
16 |
type: translation
|
17 |
+
name: Translation eng-cat
|
18 |
dataset:
|
19 |
name: flores101-devtest
|
20 |
type: flores_101
|
21 |
args: eng cat devtest
|
22 |
metrics:
|
23 |
+
- type: bleu
|
|
|
24 |
value: 41.5
|
25 |
+
name: BLEU
|
26 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
value: 25.4
|
28 |
+
name: BLEU
|
29 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
value: 28.1
|
31 |
+
name: BLEU
|
32 |
- task:
|
|
|
33 |
type: translation
|
34 |
+
name: Translation eng-spa
|
35 |
dataset:
|
36 |
name: news-test2008
|
37 |
type: news-test2008
|
38 |
args: eng-spa
|
39 |
metrics:
|
40 |
+
- type: bleu
|
|
|
41 |
value: 30.0
|
42 |
+
name: BLEU
|
43 |
- task:
|
|
|
44 |
type: translation
|
45 |
+
name: Translation eng-cat
|
46 |
dataset:
|
47 |
name: tatoeba-test-v2021-08-07
|
48 |
type: tatoeba_mt
|
49 |
args: eng-cat
|
50 |
metrics:
|
51 |
+
- type: bleu
|
|
|
52 |
value: 47.8
|
53 |
+
name: BLEU
|
54 |
+
- type: bleu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
value: 57.0
|
56 |
+
name: BLEU
|
57 |
- task:
|
|
|
58 |
type: translation
|
59 |
+
name: Translation eng-spa
|
60 |
dataset:
|
61 |
name: tico19-test
|
62 |
type: tico19-test
|
63 |
args: eng-spa
|
64 |
metrics:
|
65 |
+
- type: bleu
|
|
|
66 |
value: 52.5
|
67 |
+
name: BLEU
|
68 |
- task:
|
|
|
69 |
type: translation
|
70 |
+
name: Translation eng-spa
|
71 |
dataset:
|
72 |
name: newstest2009
|
73 |
type: wmt-2009-news
|
74 |
args: eng-spa
|
75 |
metrics:
|
76 |
+
- type: bleu
|
|
|
77 |
value: 30.5
|
78 |
+
name: BLEU
|
79 |
- task:
|
|
|
80 |
type: translation
|
81 |
+
name: Translation eng-spa
|
82 |
dataset:
|
83 |
name: newstest2010
|
84 |
type: wmt-2010-news
|
85 |
args: eng-spa
|
86 |
metrics:
|
87 |
+
- type: bleu
|
|
|
88 |
value: 37.4
|
89 |
+
name: BLEU
|
90 |
- task:
|
|
|
91 |
type: translation
|
92 |
+
name: Translation eng-spa
|
93 |
dataset:
|
94 |
name: newstest2011
|
95 |
type: wmt-2011-news
|
96 |
args: eng-spa
|
97 |
metrics:
|
98 |
+
- type: bleu
|
|
|
99 |
value: 39.1
|
100 |
+
name: BLEU
|
101 |
- task:
|
|
|
102 |
type: translation
|
103 |
+
name: Translation eng-spa
|
104 |
dataset:
|
105 |
name: newstest2012
|
106 |
type: wmt-2012-news
|
107 |
args: eng-spa
|
108 |
metrics:
|
109 |
+
- type: bleu
|
|
|
110 |
value: 39.6
|
111 |
+
name: BLEU
|
112 |
- task:
|
|
|
113 |
type: translation
|
114 |
+
name: Translation eng-spa
|
115 |
dataset:
|
116 |
name: newstest2013
|
117 |
type: wmt-2013-news
|
118 |
args: eng-spa
|
119 |
metrics:
|
120 |
+
- type: bleu
|
|
|
121 |
value: 35.8
|
122 |
+
name: BLEU
|
123 |
---
|
124 |
# opus-mt-tc-big-en-cat_oci_spa
|
125 |
|
|
|
127 |
|
128 |
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
|
129 |
|
130 |
+
* Publications: [OPUS-MT � Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge � Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
|
131 |
|
132 |
```
|
133 |
@inproceedings{tiedemann-thottingal-2020-opus,
|
|
|
191 |
print( tokenizer.decode(t, skip_special_tokens=True) )
|
192 |
|
193 |
# expected output:
|
194 |
+
# �Por qu� quieres que Tom vaya conmigo?
|
195 |
+
# Ella lo oblig� a comer espinacas.
|
196 |
```
|
197 |
|
198 |
You can also use OPUS-MT models with the transformers pipelines, for example:
|
|
|
202 |
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-cat_oci_spa")
|
203 |
print(pipe(">>spa<< Why do you want Tom to go there with me?"))
|
204 |
|
205 |
+
# expected output: �Por qu� quieres que Tom vaya conmigo?
|
206 |
```
|
207 |
|
208 |
## Benchmarks
|
|
|
230 |
|
231 |
## Acknowledgements
|
232 |
|
233 |
+
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union�s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union�s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
|
234 |
|
235 |
## Model conversion info
|
236 |
|