Add multilingual to the language tag
Browse filesHi! A PR to add multilingual to the language tag to improve the referencing.
README.md
CHANGED
@@ -2,121 +2,113 @@
|
|
2 |
language:
|
3 |
- en
|
4 |
- es
|
|
|
|
|
5 |
tags:
|
6 |
- translation
|
7 |
- opus-mt-tc
|
8 |
-
license: cc-by-4.0
|
9 |
model-index:
|
10 |
- name: opus-mt-tc-big-en-es
|
11 |
results:
|
12 |
- task:
|
13 |
-
name: Translation eng-spa
|
14 |
type: translation
|
15 |
-
|
16 |
dataset:
|
17 |
name: flores101-devtest
|
18 |
type: flores_101
|
19 |
args: eng spa devtest
|
20 |
metrics:
|
21 |
-
-
|
22 |
-
type: bleu
|
23 |
value: 28.5
|
|
|
24 |
- task:
|
25 |
-
name: Translation eng-spa
|
26 |
type: translation
|
27 |
-
|
28 |
dataset:
|
29 |
name: news-test2008
|
30 |
type: news-test2008
|
31 |
args: eng-spa
|
32 |
metrics:
|
33 |
-
-
|
34 |
-
type: bleu
|
35 |
value: 30.1
|
|
|
36 |
- task:
|
37 |
-
name: Translation eng-spa
|
38 |
type: translation
|
39 |
-
|
40 |
dataset:
|
41 |
name: tatoeba-test-v2021-08-07
|
42 |
type: tatoeba_mt
|
43 |
args: eng-spa
|
44 |
metrics:
|
45 |
-
-
|
46 |
-
type: bleu
|
47 |
value: 57.2
|
|
|
48 |
- task:
|
49 |
-
name: Translation eng-spa
|
50 |
type: translation
|
51 |
-
|
52 |
dataset:
|
53 |
name: tico19-test
|
54 |
type: tico19-test
|
55 |
args: eng-spa
|
56 |
metrics:
|
57 |
-
-
|
58 |
-
type: bleu
|
59 |
value: 53.0
|
|
|
60 |
- task:
|
61 |
-
name: Translation eng-spa
|
62 |
type: translation
|
63 |
-
|
64 |
dataset:
|
65 |
name: newstest2009
|
66 |
type: wmt-2009-news
|
67 |
args: eng-spa
|
68 |
metrics:
|
69 |
-
-
|
70 |
-
type: bleu
|
71 |
value: 30.2
|
|
|
72 |
- task:
|
73 |
-
name: Translation eng-spa
|
74 |
type: translation
|
75 |
-
|
76 |
dataset:
|
77 |
name: newstest2010
|
78 |
type: wmt-2010-news
|
79 |
args: eng-spa
|
80 |
metrics:
|
81 |
-
-
|
82 |
-
type: bleu
|
83 |
value: 37.6
|
|
|
84 |
- task:
|
85 |
-
name: Translation eng-spa
|
86 |
type: translation
|
87 |
-
|
88 |
dataset:
|
89 |
name: newstest2011
|
90 |
type: wmt-2011-news
|
91 |
args: eng-spa
|
92 |
metrics:
|
93 |
-
-
|
94 |
-
type: bleu
|
95 |
value: 38.9
|
|
|
96 |
- task:
|
97 |
-
name: Translation eng-spa
|
98 |
type: translation
|
99 |
-
|
100 |
dataset:
|
101 |
name: newstest2012
|
102 |
type: wmt-2012-news
|
103 |
args: eng-spa
|
104 |
metrics:
|
105 |
-
-
|
106 |
-
type: bleu
|
107 |
value: 39.5
|
|
|
108 |
- task:
|
109 |
-
name: Translation eng-spa
|
110 |
type: translation
|
111 |
-
|
112 |
dataset:
|
113 |
name: newstest2013
|
114 |
type: wmt-2013-news
|
115 |
args: eng-spa
|
116 |
metrics:
|
117 |
-
-
|
118 |
-
type: bleu
|
119 |
value: 35.9
|
|
|
120 |
---
|
121 |
# opus-mt-tc-big-en-es
|
122 |
|
@@ -124,7 +116,7 @@ Neural machine translation model for translating from English (en) to Spanish (e
|
|
124 |
|
125 |
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
|
126 |
|
127 |
-
* Publications: [OPUS-MT
|
128 |
|
129 |
```
|
130 |
@inproceedings{tiedemann-thottingal-2020-opus,
|
@@ -184,7 +176,7 @@ for t in translated:
|
|
184 |
print( tokenizer.decode(t, skip_special_tokens=True) )
|
185 |
|
186 |
# expected output:
|
187 |
-
# Una avispa lo
|
188 |
# Me encanta la naturaleza.
|
189 |
```
|
190 |
|
@@ -195,7 +187,7 @@ from transformers import pipeline
|
|
195 |
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-es")
|
196 |
print(pipe("A wasp stung him and he had an allergic reaction."))
|
197 |
|
198 |
-
# expected output: Una avispa lo
|
199 |
```
|
200 |
|
201 |
## Benchmarks
|
@@ -220,7 +212,7 @@ print(pipe("A wasp stung him and he had an allergic reaction."))
|
|
220 |
|
221 |
## Acknowledgements
|
222 |
|
223 |
-
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union
|
224 |
|
225 |
## Model conversion info
|
226 |
|
|
|
2 |
language:
|
3 |
- en
|
4 |
- es
|
5 |
+
- multilingual
|
6 |
+
license: cc-by-4.0
|
7 |
tags:
|
8 |
- translation
|
9 |
- opus-mt-tc
|
|
|
10 |
model-index:
|
11 |
- name: opus-mt-tc-big-en-es
|
12 |
results:
|
13 |
- task:
|
|
|
14 |
type: translation
|
15 |
+
name: Translation eng-spa
|
16 |
dataset:
|
17 |
name: flores101-devtest
|
18 |
type: flores_101
|
19 |
args: eng spa devtest
|
20 |
metrics:
|
21 |
+
- type: bleu
|
|
|
22 |
value: 28.5
|
23 |
+
name: BLEU
|
24 |
- task:
|
|
|
25 |
type: translation
|
26 |
+
name: Translation eng-spa
|
27 |
dataset:
|
28 |
name: news-test2008
|
29 |
type: news-test2008
|
30 |
args: eng-spa
|
31 |
metrics:
|
32 |
+
- type: bleu
|
|
|
33 |
value: 30.1
|
34 |
+
name: BLEU
|
35 |
- task:
|
|
|
36 |
type: translation
|
37 |
+
name: Translation eng-spa
|
38 |
dataset:
|
39 |
name: tatoeba-test-v2021-08-07
|
40 |
type: tatoeba_mt
|
41 |
args: eng-spa
|
42 |
metrics:
|
43 |
+
- type: bleu
|
|
|
44 |
value: 57.2
|
45 |
+
name: BLEU
|
46 |
- task:
|
|
|
47 |
type: translation
|
48 |
+
name: Translation eng-spa
|
49 |
dataset:
|
50 |
name: tico19-test
|
51 |
type: tico19-test
|
52 |
args: eng-spa
|
53 |
metrics:
|
54 |
+
- type: bleu
|
|
|
55 |
value: 53.0
|
56 |
+
name: BLEU
|
57 |
- task:
|
|
|
58 |
type: translation
|
59 |
+
name: Translation eng-spa
|
60 |
dataset:
|
61 |
name: newstest2009
|
62 |
type: wmt-2009-news
|
63 |
args: eng-spa
|
64 |
metrics:
|
65 |
+
- type: bleu
|
|
|
66 |
value: 30.2
|
67 |
+
name: BLEU
|
68 |
- task:
|
|
|
69 |
type: translation
|
70 |
+
name: Translation eng-spa
|
71 |
dataset:
|
72 |
name: newstest2010
|
73 |
type: wmt-2010-news
|
74 |
args: eng-spa
|
75 |
metrics:
|
76 |
+
- type: bleu
|
|
|
77 |
value: 37.6
|
78 |
+
name: BLEU
|
79 |
- task:
|
|
|
80 |
type: translation
|
81 |
+
name: Translation eng-spa
|
82 |
dataset:
|
83 |
name: newstest2011
|
84 |
type: wmt-2011-news
|
85 |
args: eng-spa
|
86 |
metrics:
|
87 |
+
- type: bleu
|
|
|
88 |
value: 38.9
|
89 |
+
name: BLEU
|
90 |
- task:
|
|
|
91 |
type: translation
|
92 |
+
name: Translation eng-spa
|
93 |
dataset:
|
94 |
name: newstest2012
|
95 |
type: wmt-2012-news
|
96 |
args: eng-spa
|
97 |
metrics:
|
98 |
+
- type: bleu
|
|
|
99 |
value: 39.5
|
100 |
+
name: BLEU
|
101 |
- task:
|
|
|
102 |
type: translation
|
103 |
+
name: Translation eng-spa
|
104 |
dataset:
|
105 |
name: newstest2013
|
106 |
type: wmt-2013-news
|
107 |
args: eng-spa
|
108 |
metrics:
|
109 |
+
- type: bleu
|
|
|
110 |
value: 35.9
|
111 |
+
name: BLEU
|
112 |
---
|
113 |
# opus-mt-tc-big-en-es
|
114 |
|
|
|
116 |
|
117 |
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
|
118 |
|
119 |
+
* Publications: [OPUS-MT � Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge � Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
|
120 |
|
121 |
```
|
122 |
@inproceedings{tiedemann-thottingal-2020-opus,
|
|
|
176 |
print( tokenizer.decode(t, skip_special_tokens=True) )
|
177 |
|
178 |
# expected output:
|
179 |
+
# Una avispa lo pic� y tuvo una reacci�n al�rgica.
|
180 |
# Me encanta la naturaleza.
|
181 |
```
|
182 |
|
|
|
187 |
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-es")
|
188 |
print(pipe("A wasp stung him and he had an allergic reaction."))
|
189 |
|
190 |
+
# expected output: Una avispa lo pic� y tuvo una reacci�n al�rgica.
|
191 |
```
|
192 |
|
193 |
## Benchmarks
|
|
|
212 |
|
213 |
## Acknowledgements
|
214 |
|
215 |
+
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union�s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union�s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
|
216 |
|
217 |
## Model conversion info
|
218 |
|