lbourdois commited on
Commit
e03e597
1 Parent(s): d92f8dd

Add multilingual to the language tag

Browse files

Hi! A PR to add multilingual to the language tag to improve the referencing.

Files changed (1) hide show
  1. README.md +33 -41
README.md CHANGED
@@ -2,121 +2,113 @@
2
  language:
3
  - en
4
  - es
 
 
5
  tags:
6
  - translation
7
  - opus-mt-tc
8
- license: cc-by-4.0
9
  model-index:
10
  - name: opus-mt-tc-big-en-es
11
  results:
12
  - task:
13
- name: Translation eng-spa
14
  type: translation
15
- args: eng-spa
16
  dataset:
17
  name: flores101-devtest
18
  type: flores_101
19
  args: eng spa devtest
20
  metrics:
21
- - name: BLEU
22
- type: bleu
23
  value: 28.5
 
24
  - task:
25
- name: Translation eng-spa
26
  type: translation
27
- args: eng-spa
28
  dataset:
29
  name: news-test2008
30
  type: news-test2008
31
  args: eng-spa
32
  metrics:
33
- - name: BLEU
34
- type: bleu
35
  value: 30.1
 
36
  - task:
37
- name: Translation eng-spa
38
  type: translation
39
- args: eng-spa
40
  dataset:
41
  name: tatoeba-test-v2021-08-07
42
  type: tatoeba_mt
43
  args: eng-spa
44
  metrics:
45
- - name: BLEU
46
- type: bleu
47
  value: 57.2
 
48
  - task:
49
- name: Translation eng-spa
50
  type: translation
51
- args: eng-spa
52
  dataset:
53
  name: tico19-test
54
  type: tico19-test
55
  args: eng-spa
56
  metrics:
57
- - name: BLEU
58
- type: bleu
59
  value: 53.0
 
60
  - task:
61
- name: Translation eng-spa
62
  type: translation
63
- args: eng-spa
64
  dataset:
65
  name: newstest2009
66
  type: wmt-2009-news
67
  args: eng-spa
68
  metrics:
69
- - name: BLEU
70
- type: bleu
71
  value: 30.2
 
72
  - task:
73
- name: Translation eng-spa
74
  type: translation
75
- args: eng-spa
76
  dataset:
77
  name: newstest2010
78
  type: wmt-2010-news
79
  args: eng-spa
80
  metrics:
81
- - name: BLEU
82
- type: bleu
83
  value: 37.6
 
84
  - task:
85
- name: Translation eng-spa
86
  type: translation
87
- args: eng-spa
88
  dataset:
89
  name: newstest2011
90
  type: wmt-2011-news
91
  args: eng-spa
92
  metrics:
93
- - name: BLEU
94
- type: bleu
95
  value: 38.9
 
96
  - task:
97
- name: Translation eng-spa
98
  type: translation
99
- args: eng-spa
100
  dataset:
101
  name: newstest2012
102
  type: wmt-2012-news
103
  args: eng-spa
104
  metrics:
105
- - name: BLEU
106
- type: bleu
107
  value: 39.5
 
108
  - task:
109
- name: Translation eng-spa
110
  type: translation
111
- args: eng-spa
112
  dataset:
113
  name: newstest2013
114
  type: wmt-2013-news
115
  args: eng-spa
116
  metrics:
117
- - name: BLEU
118
- type: bleu
119
  value: 35.9
 
120
  ---
121
  # opus-mt-tc-big-en-es
122
 
@@ -124,7 +116,7 @@ Neural machine translation model for translating from English (en) to Spanish (e
124
 
125
  This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
126
 
127
- * Publications: [OPUS-MT Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
128
 
129
  ```
130
  @inproceedings{tiedemann-thottingal-2020-opus,
@@ -184,7 +176,7 @@ for t in translated:
184
  print( tokenizer.decode(t, skip_special_tokens=True) )
185
 
186
  # expected output:
187
- # Una avispa lo picó y tuvo una reacción alérgica.
188
  # Me encanta la naturaleza.
189
  ```
190
 
@@ -195,7 +187,7 @@ from transformers import pipeline
195
  pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-es")
196
  print(pipe("A wasp stung him and he had an allergic reaction."))
197
 
198
- # expected output: Una avispa lo picó y tuvo una reacción alérgica.
199
  ```
200
 
201
  ## Benchmarks
@@ -220,7 +212,7 @@ print(pipe("A wasp stung him and he had an allergic reaction."))
220
 
221
  ## Acknowledgements
222
 
223
- The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Unions Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
224
 
225
  ## Model conversion info
226
 
 
2
  language:
3
  - en
4
  - es
5
+ - multilingual
6
+ license: cc-by-4.0
7
  tags:
8
  - translation
9
  - opus-mt-tc
 
10
  model-index:
11
  - name: opus-mt-tc-big-en-es
12
  results:
13
  - task:
 
14
  type: translation
15
+ name: Translation eng-spa
16
  dataset:
17
  name: flores101-devtest
18
  type: flores_101
19
  args: eng spa devtest
20
  metrics:
21
+ - type: bleu
 
22
  value: 28.5
23
+ name: BLEU
24
  - task:
 
25
  type: translation
26
+ name: Translation eng-spa
27
  dataset:
28
  name: news-test2008
29
  type: news-test2008
30
  args: eng-spa
31
  metrics:
32
+ - type: bleu
 
33
  value: 30.1
34
+ name: BLEU
35
  - task:
 
36
  type: translation
37
+ name: Translation eng-spa
38
  dataset:
39
  name: tatoeba-test-v2021-08-07
40
  type: tatoeba_mt
41
  args: eng-spa
42
  metrics:
43
+ - type: bleu
 
44
  value: 57.2
45
+ name: BLEU
46
  - task:
 
47
  type: translation
48
+ name: Translation eng-spa
49
  dataset:
50
  name: tico19-test
51
  type: tico19-test
52
  args: eng-spa
53
  metrics:
54
+ - type: bleu
 
55
  value: 53.0
56
+ name: BLEU
57
  - task:
 
58
  type: translation
59
+ name: Translation eng-spa
60
  dataset:
61
  name: newstest2009
62
  type: wmt-2009-news
63
  args: eng-spa
64
  metrics:
65
+ - type: bleu
 
66
  value: 30.2
67
+ name: BLEU
68
  - task:
 
69
  type: translation
70
+ name: Translation eng-spa
71
  dataset:
72
  name: newstest2010
73
  type: wmt-2010-news
74
  args: eng-spa
75
  metrics:
76
+ - type: bleu
 
77
  value: 37.6
78
+ name: BLEU
79
  - task:
 
80
  type: translation
81
+ name: Translation eng-spa
82
  dataset:
83
  name: newstest2011
84
  type: wmt-2011-news
85
  args: eng-spa
86
  metrics:
87
+ - type: bleu
 
88
  value: 38.9
89
+ name: BLEU
90
  - task:
 
91
  type: translation
92
+ name: Translation eng-spa
93
  dataset:
94
  name: newstest2012
95
  type: wmt-2012-news
96
  args: eng-spa
97
  metrics:
98
+ - type: bleu
 
99
  value: 39.5
100
+ name: BLEU
101
  - task:
 
102
  type: translation
103
+ name: Translation eng-spa
104
  dataset:
105
  name: newstest2013
106
  type: wmt-2013-news
107
  args: eng-spa
108
  metrics:
109
+ - type: bleu
 
110
  value: 35.9
111
+ name: BLEU
112
  ---
113
  # opus-mt-tc-big-en-es
114
 
 
116
 
117
  This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
118
 
119
+ * Publications: [OPUS-MT Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
120
 
121
  ```
122
  @inproceedings{tiedemann-thottingal-2020-opus,
 
176
  print( tokenizer.decode(t, skip_special_tokens=True) )
177
 
178
  # expected output:
179
+ # Una avispa lo pic� y tuvo una reacci�n al�rgica.
180
  # Me encanta la naturaleza.
181
  ```
182
 
 
187
  pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-es")
188
  print(pipe("A wasp stung him and he had an allergic reaction."))
189
 
190
+ # expected output: Una avispa lo pic� y tuvo una reacci�n al�rgica.
191
  ```
192
 
193
  ## Benchmarks
 
212
 
213
  ## Acknowledgements
214
 
215
+ The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Unions Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
216
 
217
  ## Model conversion info
218