File size: 2,529 Bytes
d30e821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71cc950
d30e821
 
 
 
 
 
 
 
 
71cc950
 
d30e821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---

license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9918293236495688
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-tiny-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0520
- Accuracy: 0.9918

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05

- train_batch_size: 6

- eval_batch_size: 6

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1

- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0765        | 1.0   | 428  | 0.1101          | 0.9773   |
| 0.1014        | 2.0   | 857  | 0.0692          | 0.9825   |
| 0.0425        | 3.0   | 1285 | 0.0766          | 0.9814   |
| 0.1229        | 4.0   | 1714 | 0.0515          | 0.9873   |
| 0.074         | 5.0   | 2142 | 0.0497          | 0.9891   |
| 0.0133        | 6.0   | 2571 | 0.0537          | 0.9882   |
| 0.0753        | 7.0   | 2999 | 0.0490          | 0.9911   |
| 0.0263        | 8.0   | 3428 | 0.0520          | 0.9918   |
| 0.0423        | 9.0   | 3856 | 0.0513          | 0.9914   |
| 0.0266        | 9.99  | 4280 | 0.0485          | 0.9916   |


### Framework versions

- Transformers 4.33.0
- Pytorch 2.0.1+cu117
- Datasets 2.16.0
- Tokenizers 0.13.3