File size: 2,529 Bytes
d30e821 71cc950 d30e821 71cc950 d30e821 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9918293236495688
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0520
- Accuracy: 0.9918
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0765 | 1.0 | 428 | 0.1101 | 0.9773 |
| 0.1014 | 2.0 | 857 | 0.0692 | 0.9825 |
| 0.0425 | 3.0 | 1285 | 0.0766 | 0.9814 |
| 0.1229 | 4.0 | 1714 | 0.0515 | 0.9873 |
| 0.074 | 5.0 | 2142 | 0.0497 | 0.9891 |
| 0.0133 | 6.0 | 2571 | 0.0537 | 0.9882 |
| 0.0753 | 7.0 | 2999 | 0.0490 | 0.9911 |
| 0.0263 | 8.0 | 3428 | 0.0520 | 0.9918 |
| 0.0423 | 9.0 | 3856 | 0.0513 | 0.9914 |
| 0.0266 | 9.99 | 4280 | 0.0485 | 0.9916 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.1+cu117
- Datasets 2.16.0
- Tokenizers 0.13.3
|