File size: 33,713 Bytes
736c789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
from typing import Union

import torch.nn.functional as F
import numpy as np
import torch
import torch.nn as nn
from torch.nn.utils import weight_norm
from torchaudio.transforms import Resample
import os
import librosa
import soundfile as sf
import torch.utils.data
from librosa.filters import mel as librosa_mel_fn
import math
from functools import partial

from einops import rearrange, repeat
from local_attention import LocalAttention
from torch import nn

os.environ["LRU_CACHE_CAPACITY"] = "3"

def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
    sampling_rate = None
    try:
        data, sampling_rate = sf.read(full_path, always_2d=True)# than soundfile.
    except Exception as ex:
        print(f"'{full_path}' failed to load.\nException:")
        print(ex)
        if return_empty_on_exception:
            return [], sampling_rate or target_sr or 48000
        else:
            raise Exception(ex)
    
    if len(data.shape) > 1:
        data = data[:, 0]
        assert len(data) > 2# check duration of audio file is > 2 samples (because otherwise the slice operation was on the wrong dimension)
    
    if np.issubdtype(data.dtype, np.integer): # if audio data is type int
        max_mag = -np.iinfo(data.dtype).min # maximum magnitude = min possible value of intXX
    else: # if audio data is type fp32
        max_mag = max(np.amax(data), -np.amin(data))
        max_mag = (2**31)+1 if max_mag > (2**15) else ((2**15)+1 if max_mag > 1.01 else 1.0) # data should be either 16-bit INT, 32-bit INT or [-1 to 1] float32
    
    data = torch.FloatTensor(data.astype(np.float32))/max_mag
    
    if (torch.isinf(data) | torch.isnan(data)).any() and return_empty_on_exception:# resample will crash with inf/NaN inputs. return_empty_on_exception will return empty arr instead of except
        return [], sampling_rate or target_sr or 48000
    if target_sr is not None and sampling_rate != target_sr:
        data = torch.from_numpy(librosa.core.resample(data.numpy(), orig_sr=sampling_rate, target_sr=target_sr))
        sampling_rate = target_sr
    
    return data, sampling_rate

def dynamic_range_compression(x, C=1, clip_val=1e-5):
    return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)

def dynamic_range_decompression(x, C=1):
    return np.exp(x) / C

def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
    return torch.log(torch.clamp(x, min=clip_val) * C)

def dynamic_range_decompression_torch(x, C=1):
    return torch.exp(x) / C

class STFT():
    def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5):
        self.target_sr = sr
        
        self.n_mels     = n_mels
        self.n_fft      = n_fft
        self.win_size   = win_size
        self.hop_length = hop_length
        self.fmin     = fmin
        self.fmax     = fmax
        self.clip_val = clip_val
        self.mel_basis = {}
        self.hann_window = {}
    
    def get_mel(self, y, keyshift=0, speed=1, center=False, train=False):
        sampling_rate = self.target_sr
        n_mels     = self.n_mels
        n_fft      = self.n_fft
        win_size   = self.win_size
        hop_length = self.hop_length
        fmin       = self.fmin
        fmax       = self.fmax
        clip_val   = self.clip_val
        
        factor = 2 ** (keyshift / 12)       
        n_fft_new = int(np.round(n_fft * factor))
        win_size_new = int(np.round(win_size * factor))
        hop_length_new = int(np.round(hop_length * speed))
        if not train:
            mel_basis = self.mel_basis
            hann_window = self.hann_window
        else:
            mel_basis = {}
            hann_window = {}
        
        if torch.min(y) < -1.:
            print('min value is ', torch.min(y))
        if torch.max(y) > 1.:
            print('max value is ', torch.max(y))
        
        mel_basis_key = str(fmax)+'_'+str(y.device)
        if mel_basis_key not in mel_basis:
            mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
            mel_basis[mel_basis_key] = torch.from_numpy(mel).float().to(y.device)
        
        keyshift_key = str(keyshift)+'_'+str(y.device)
        if keyshift_key not in hann_window:
            hann_window[keyshift_key] = torch.hann_window(win_size_new).to(y.device)
        
        pad_left = (win_size_new - hop_length_new) //2
        pad_right = max((win_size_new- hop_length_new + 1) //2, win_size_new - y.size(-1) - pad_left)
        if pad_right < y.size(-1):
            mode = 'reflect'
        else:
            mode = 'constant'
        y = torch.nn.functional.pad(y.unsqueeze(1), (pad_left, pad_right), mode = mode)
        y = y.squeeze(1)
        
        spec = torch.stft(y, n_fft_new, hop_length=hop_length_new, win_length=win_size_new, window=hann_window[keyshift_key],
                          center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True)                          
        spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + (1e-9))
        if keyshift != 0:
            size = n_fft // 2 + 1
            resize = spec.size(1)
            if resize < size:
                spec = F.pad(spec, (0, 0, 0, size-resize))
            spec = spec[:, :size, :] * win_size / win_size_new   
        spec = torch.matmul(mel_basis[mel_basis_key], spec)
        spec = dynamic_range_compression_torch(spec, clip_val=clip_val)
        return spec
    
    def __call__(self, audiopath):
        audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr)
        spect = self.get_mel(audio.unsqueeze(0)).squeeze(0)
        return spect

stft = STFT()

#import fast_transformers.causal_product.causal_product_cuda

def softmax_kernel(data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device = None):
    b, h, *_ = data.shape
    # (batch size, head, length, model_dim)

    # normalize model dim
    data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.

    # what is ration?, projection_matrix.shape[0] --> 266
    
    ratio = (projection_matrix.shape[0] ** -0.5)

    projection = repeat(projection_matrix, 'j d -> b h j d', b = b, h = h)
    projection = projection.type_as(data)

    #data_dash = w^T x
    data_dash = torch.einsum('...id,...jd->...ij', (data_normalizer * data), projection)

    
    # diag_data = D**2 
    diag_data = data ** 2
    diag_data = torch.sum(diag_data, dim=-1)
    diag_data = (diag_data / 2.0) * (data_normalizer ** 2)
    diag_data = diag_data.unsqueeze(dim=-1)
    
    #print ()
    if is_query:
        data_dash = ratio * (
            torch.exp(data_dash - diag_data -
                    torch.max(data_dash, dim=-1, keepdim=True).values) + eps)
    else:
        data_dash = ratio * (
            torch.exp(data_dash - diag_data + eps))#- torch.max(data_dash)) + eps)

    return data_dash.type_as(data)

def orthogonal_matrix_chunk(cols, qr_uniform_q = False, device = None):
    unstructured_block = torch.randn((cols, cols), device = device)
    q, r = torch.linalg.qr(unstructured_block.cpu(), mode='reduced')
    q, r = map(lambda t: t.to(device), (q, r))

    # proposed by @Parskatt
    # to make sure Q is uniform https://arxiv.org/pdf/math-ph/0609050.pdf
    if qr_uniform_q:
        d = torch.diag(r, 0)
        q *= d.sign()
    return q.t()
def exists(val):
    return val is not None

def empty(tensor):
    return tensor.numel() == 0

def default(val, d):
    return val if exists(val) else d

def cast_tuple(val):
    return (val,) if not isinstance(val, tuple) else val

class PCmer(nn.Module):
    """The encoder that is used in the Transformer model."""
    
    def __init__(self, 
                num_layers,
                num_heads,
                dim_model,
                dim_keys,
                dim_values,
                residual_dropout,
                attention_dropout):
        super().__init__()
        self.num_layers = num_layers
        self.num_heads = num_heads
        self.dim_model = dim_model
        self.dim_values = dim_values
        self.dim_keys = dim_keys
        self.residual_dropout = residual_dropout
        self.attention_dropout = attention_dropout

        self._layers = nn.ModuleList([_EncoderLayer(self) for _ in range(num_layers)])
        
    #  METHODS  ########################################################################################################
    
    def forward(self, phone, mask=None):
        
        # apply all layers to the input
        for (i, layer) in enumerate(self._layers):
            phone = layer(phone, mask)
        # provide the final sequence
        return phone


# ==================================================================================================================== #
#  CLASS  _ E N C O D E R  L A Y E R                                                                                   #
# ==================================================================================================================== #


class _EncoderLayer(nn.Module):
    """One layer of the encoder.
    
    Attributes:
        attn: (:class:`mha.MultiHeadAttention`): The attention mechanism that is used to read the input sequence.
        feed_forward (:class:`ffl.FeedForwardLayer`): The feed-forward layer on top of the attention mechanism.
    """
    
    def __init__(self, parent: PCmer):
        """Creates a new instance of ``_EncoderLayer``.
        
        Args:
            parent (Encoder): The encoder that the layers is created for.
        """
        super().__init__()
        
        
        self.conformer = ConformerConvModule(parent.dim_model)
        self.norm = nn.LayerNorm(parent.dim_model)
        self.dropout = nn.Dropout(parent.residual_dropout)
        
        # selfatt -> fastatt: performer!
        self.attn = SelfAttention(dim = parent.dim_model,
                                  heads = parent.num_heads,
                                  causal = False)
        
    #  METHODS  ########################################################################################################

    def forward(self, phone, mask=None):
        
        # compute attention sub-layer
        phone = phone + (self.attn(self.norm(phone), mask=mask))
        
        phone = phone + (self.conformer(phone))
        
        return phone 

def calc_same_padding(kernel_size):
    pad = kernel_size // 2
    return (pad, pad - (kernel_size + 1) % 2)

# helper classes

class Swish(nn.Module):
    def forward(self, x):
        return x * x.sigmoid()

class Transpose(nn.Module):
    def __init__(self, dims):
        super().__init__()
        assert len(dims) == 2, 'dims must be a tuple of two dimensions'
        self.dims = dims

    def forward(self, x):
        return x.transpose(*self.dims)

class GLU(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x):
        out, gate = x.chunk(2, dim=self.dim)
        return out * gate.sigmoid()

class DepthWiseConv1d(nn.Module):
    def __init__(self, chan_in, chan_out, kernel_size, padding):
        super().__init__()
        self.padding = padding
        self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups = chan_in)

    def forward(self, x):
        x = F.pad(x, self.padding)
        return self.conv(x)

class ConformerConvModule(nn.Module):
    def __init__(
        self,
        dim,
        causal = False,
        expansion_factor = 2,
        kernel_size = 31,
        dropout = 0.):
        super().__init__()

        inner_dim = dim * expansion_factor
        padding = calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0)

        self.net = nn.Sequential(
            nn.LayerNorm(dim),
            Transpose((1, 2)),
            nn.Conv1d(dim, inner_dim * 2, 1),
            GLU(dim=1),
            DepthWiseConv1d(inner_dim, inner_dim, kernel_size = kernel_size, padding = padding),
            #nn.BatchNorm1d(inner_dim) if not causal else nn.Identity(),
            Swish(),
            nn.Conv1d(inner_dim, dim, 1),
            Transpose((1, 2)),
            nn.Dropout(dropout)
        )

    def forward(self, x):
        return self.net(x)

def linear_attention(q, k, v):
    if v is None:
        #print (k.size(), q.size())
        out = torch.einsum('...ed,...nd->...ne', k, q)
        return out

    else:
        k_cumsum = k.sum(dim = -2) 
        #k_cumsum = k.sum(dim = -2)
        D_inv = 1. / (torch.einsum('...nd,...d->...n', q, k_cumsum.type_as(q)) + 1e-8)

        context = torch.einsum('...nd,...ne->...de', k, v)
        #print ("TRUEEE: ", context.size(), q.size(), D_inv.size())
        out = torch.einsum('...de,...nd,...n->...ne', context, q, D_inv)
        return out

def gaussian_orthogonal_random_matrix(nb_rows, nb_columns, scaling = 0, qr_uniform_q = False, device = None):
    nb_full_blocks = int(nb_rows / nb_columns)
    #print (nb_full_blocks)
    block_list = []

    for _ in range(nb_full_blocks):
        q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device)
        block_list.append(q)
    # block_list[n] is a orthogonal matrix ... (model_dim * model_dim)
    #print (block_list[0].size(), torch.einsum('...nd,...nd->...n', block_list[0], torch.roll(block_list[0],1,1)))
    #print (nb_rows, nb_full_blocks, nb_columns)
    remaining_rows = nb_rows - nb_full_blocks * nb_columns
    #print (remaining_rows)
    if remaining_rows > 0:
        q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device)
        #print (q[:remaining_rows].size())
        block_list.append(q[:remaining_rows])

    final_matrix = torch.cat(block_list)
    
    if scaling == 0:
        multiplier = torch.randn((nb_rows, nb_columns), device = device).norm(dim = 1)
    elif scaling == 1:
        multiplier = math.sqrt((float(nb_columns))) * torch.ones((nb_rows,), device = device)
    else:
        raise ValueError(f'Invalid scaling {scaling}')

    return torch.diag(multiplier) @ final_matrix

class FastAttention(nn.Module):
    def __init__(self, dim_heads, nb_features = None, ortho_scaling = 0, causal = False, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, no_projection = False):
        super().__init__()
        nb_features = default(nb_features, int(dim_heads * math.log(dim_heads)))

        self.dim_heads = dim_heads
        self.nb_features = nb_features
        self.ortho_scaling = ortho_scaling

        self.create_projection = partial(gaussian_orthogonal_random_matrix, nb_rows = self.nb_features, nb_columns = dim_heads, scaling = ortho_scaling, qr_uniform_q = qr_uniform_q)
        projection_matrix = self.create_projection()
        self.register_buffer('projection_matrix', projection_matrix)

        self.generalized_attention = generalized_attention
        self.kernel_fn = kernel_fn

        # if this is turned on, no projection will be used
        # queries and keys will be softmax-ed as in the original efficient attention paper
        self.no_projection = no_projection

        self.causal = causal

    @torch.no_grad()
    def redraw_projection_matrix(self):
        projections = self.create_projection()
        self.projection_matrix.copy_(projections)
        del projections

    def forward(self, q, k, v):
        device = q.device

        if self.no_projection:
            q = q.softmax(dim = -1)
            k = torch.exp(k) if self.causal else k.softmax(dim = -2)
        else:
            create_kernel = partial(softmax_kernel, projection_matrix = self.projection_matrix, device = device)
            
            q = create_kernel(q, is_query = True)
            k = create_kernel(k, is_query = False)

        attn_fn = linear_attention if not self.causal else self.causal_linear_fn
        if v is None:
            out = attn_fn(q, k, None)
            return out
        else:
            out = attn_fn(q, k, v)
            return out
class SelfAttention(nn.Module):
    def __init__(self, dim, causal = False, heads = 8, dim_head = 64, local_heads = 0, local_window_size = 256, nb_features = None, feature_redraw_interval = 1000, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, dropout = 0., no_projection = False):
        super().__init__()
        assert dim % heads == 0, 'dimension must be divisible by number of heads'
        dim_head = default(dim_head, dim // heads)
        inner_dim = dim_head * heads
        self.fast_attention = FastAttention(dim_head, nb_features, causal = causal, generalized_attention = generalized_attention, kernel_fn = kernel_fn, qr_uniform_q = qr_uniform_q, no_projection = no_projection)

        self.heads = heads
        self.global_heads = heads - local_heads
        self.local_attn = LocalAttention(window_size = local_window_size, causal = causal, autopad = True, dropout = dropout, look_forward = int(not causal), rel_pos_emb_config = (dim_head, local_heads)) if local_heads > 0 else None

        #print (heads, nb_features, dim_head)
        #name_embedding = torch.zeros(110, heads, dim_head, dim_head)
        #self.name_embedding = nn.Parameter(name_embedding, requires_grad=True)
        

        self.to_q = nn.Linear(dim, inner_dim)
        self.to_k = nn.Linear(dim, inner_dim)
        self.to_v = nn.Linear(dim, inner_dim)
        self.to_out = nn.Linear(inner_dim, dim)
        self.dropout = nn.Dropout(dropout)

    @torch.no_grad()
    def redraw_projection_matrix(self):
        self.fast_attention.redraw_projection_matrix()
        #torch.nn.init.zeros_(self.name_embedding)
        #print (torch.sum(self.name_embedding))
    def forward(self, x, context = None, mask = None, context_mask = None, name=None, inference=False, **kwargs):
        _, _, _, h, gh = *x.shape, self.heads, self.global_heads
        
        cross_attend = exists(context)

        context = default(context, x)
        context_mask = default(context_mask, mask) if not cross_attend else context_mask
        #print (torch.sum(self.name_embedding))
        q, k, v = self.to_q(x), self.to_k(context), self.to_v(context)

        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
        (q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v))

        attn_outs = []
        #print (name)
        #print (self.name_embedding[name].size())
        if not empty(q):
            if exists(context_mask):
                global_mask = context_mask[:, None, :, None]
                v.masked_fill_(~global_mask, 0.)
            if cross_attend:
                pass
                #print (torch.sum(self.name_embedding))
                #out = self.fast_attention(q,self.name_embedding[name],None)
                #print (torch.sum(self.name_embedding[...,-1:]))
            else:
                out = self.fast_attention(q, k, v)
            attn_outs.append(out)

        if not empty(lq):
            assert not cross_attend, 'local attention is not compatible with cross attention'
            out = self.local_attn(lq, lk, lv, input_mask = mask)
            attn_outs.append(out)

        out = torch.cat(attn_outs, dim = 1)
        out = rearrange(out, 'b h n d -> b n (h d)')
        out =  self.to_out(out)
        return self.dropout(out)

def l2_regularization(model, l2_alpha):
    l2_loss = []
    for module in model.modules():
        if type(module) is nn.Conv2d:
            l2_loss.append((module.weight ** 2).sum() / 2.0)
    return l2_alpha * sum(l2_loss)


class FCPEModel(nn.Module):
    def __init__(
            self,
            input_channel=128,
            out_dims=360,
            n_layers=12,
            n_chans=512,
            use_siren=False,
            use_full=False,
            loss_mse_scale=10,
            loss_l2_regularization=False,
            loss_l2_regularization_scale=1,
            loss_grad1_mse=False,
            loss_grad1_mse_scale=1,
            f0_max=1975.5,
            f0_min=32.70,
            confidence=False,
            threshold=0.05,
            use_input_conv=True
    ):
        super().__init__()
        if use_siren is True:
            raise ValueError("Siren is not supported yet.")
        if use_full is True:
            raise ValueError("Full model is not supported yet.")

        self.loss_mse_scale = loss_mse_scale if (loss_mse_scale is not None) else 10
        self.loss_l2_regularization = loss_l2_regularization if (loss_l2_regularization is not None) else False
        self.loss_l2_regularization_scale = loss_l2_regularization_scale if (loss_l2_regularization_scale
                                                                             is not None) else 1
        self.loss_grad1_mse = loss_grad1_mse if (loss_grad1_mse is not None) else False
        self.loss_grad1_mse_scale = loss_grad1_mse_scale if (loss_grad1_mse_scale is not None) else 1
        self.f0_max = f0_max if (f0_max is not None) else 1975.5
        self.f0_min = f0_min if (f0_min is not None) else 32.70
        self.confidence = confidence if (confidence is not None) else False
        self.threshold = threshold if (threshold is not None) else 0.05
        self.use_input_conv = use_input_conv if (use_input_conv is not None) else True

        self.cent_table_b = torch.Tensor(
            np.linspace(self.f0_to_cent(torch.Tensor([f0_min]))[0], self.f0_to_cent(torch.Tensor([f0_max]))[0],
                        out_dims))
        self.register_buffer("cent_table", self.cent_table_b)

        # conv in stack
        _leaky = nn.LeakyReLU()
        self.stack = nn.Sequential(
            nn.Conv1d(input_channel, n_chans, 3, 1, 1),
            nn.GroupNorm(4, n_chans),
            _leaky,
            nn.Conv1d(n_chans, n_chans, 3, 1, 1))

        # transformer
        self.decoder = PCmer(
            num_layers=n_layers,
            num_heads=8,
            dim_model=n_chans,
            dim_keys=n_chans,
            dim_values=n_chans,
            residual_dropout=0.1,
            attention_dropout=0.1)
        self.norm = nn.LayerNorm(n_chans)

        # out
        self.n_out = out_dims
        self.dense_out = weight_norm(
            nn.Linear(n_chans, self.n_out))

    def forward(self, mel, infer=True, gt_f0=None, return_hz_f0=False, cdecoder = "local_argmax"):
        """
        input:
            B x n_frames x n_unit
        return:
            dict of B x n_frames x feat
        """
        if cdecoder == "argmax":
            self.cdecoder = self.cents_decoder
        elif cdecoder == "local_argmax":
            self.cdecoder = self.cents_local_decoder
        if self.use_input_conv:
            x = self.stack(mel.transpose(1, 2)).transpose(1, 2)
        else:
            x = mel
        x = self.decoder(x)
        x = self.norm(x)
        x = self.dense_out(x)  # [B,N,D]
        x = torch.sigmoid(x)
        if not infer:
            gt_cent_f0 = self.f0_to_cent(gt_f0)  # mel f0  #[B,N,1]
            gt_cent_f0 = self.gaussian_blurred_cent(gt_cent_f0)  # #[B,N,out_dim]
            loss_all = self.loss_mse_scale * F.binary_cross_entropy(x, gt_cent_f0)  # bce loss
            # l2 regularization
            if self.loss_l2_regularization:
                loss_all = loss_all + l2_regularization(model=self, l2_alpha=self.loss_l2_regularization_scale)
            x = loss_all
        if infer:
            x = self.cdecoder(x)
            x = self.cent_to_f0(x)
            if not return_hz_f0:
                x = (1 + x / 700).log()
        return x

    def cents_decoder(self, y, mask=True):
        B, N, _ = y.size()
        ci = self.cent_table[None, None, :].expand(B, N, -1)
        rtn = torch.sum(ci * y, dim=-1, keepdim=True) / torch.sum(y, dim=-1, keepdim=True)  # cents: [B,N,1]
        if mask:
            confident = torch.max(y, dim=-1, keepdim=True)[0]
            confident_mask = torch.ones_like(confident)
            confident_mask[confident <= self.threshold] = float("-INF")
            rtn = rtn * confident_mask
        if self.confidence:
            return rtn, confident
        else:
            return rtn
        
    def cents_local_decoder(self, y, mask=True):
        B, N, _ = y.size()
        ci = self.cent_table[None, None, :].expand(B, N, -1)
        confident, max_index = torch.max(y, dim=-1, keepdim=True)
        local_argmax_index = torch.arange(0,9).to(max_index.device) + (max_index - 4)
        local_argmax_index[local_argmax_index<0] = 0
        local_argmax_index[local_argmax_index>=self.n_out] = self.n_out - 1
        ci_l = torch.gather(ci,-1,local_argmax_index)
        y_l = torch.gather(y,-1,local_argmax_index)
        rtn = torch.sum(ci_l * y_l, dim=-1, keepdim=True) / torch.sum(y_l, dim=-1, keepdim=True)  # cents: [B,N,1]
        if mask:
            confident_mask = torch.ones_like(confident)
            confident_mask[confident <= self.threshold] = float("-INF")
            rtn = rtn * confident_mask
        if self.confidence:
            return rtn, confident
        else:
            return rtn

    def cent_to_f0(self, cent):
        return 10. * 2 ** (cent / 1200.)

    def f0_to_cent(self, f0):
        return 1200. * torch.log2(f0 / 10.)

    def gaussian_blurred_cent(self, cents):  # cents: [B,N,1]
        mask = (cents > 0.1) & (cents < (1200. * np.log2(self.f0_max / 10.)))
        B, N, _ = cents.size()
        ci = self.cent_table[None, None, :].expand(B, N, -1)
        return torch.exp(-torch.square(ci - cents) / 1250) * mask.float()


class FCPEInfer:
    def __init__(self, model_path, device=None, dtype=torch.float32):
        if device is None:
            device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.device = device
        ckpt = torch.load(model_path, map_location=torch.device(self.device))
        self.args = DotDict(ckpt["config"])
        self.dtype = dtype
        model = FCPEModel(
            input_channel=self.args.model.input_channel,
            out_dims=self.args.model.out_dims,
            n_layers=self.args.model.n_layers,
            n_chans=self.args.model.n_chans,
            use_siren=self.args.model.use_siren,
            use_full=self.args.model.use_full,
            loss_mse_scale=self.args.loss.loss_mse_scale,
            loss_l2_regularization=self.args.loss.loss_l2_regularization,
            loss_l2_regularization_scale=self.args.loss.loss_l2_regularization_scale,
            loss_grad1_mse=self.args.loss.loss_grad1_mse,
            loss_grad1_mse_scale=self.args.loss.loss_grad1_mse_scale,
            f0_max=self.args.model.f0_max,
            f0_min=self.args.model.f0_min,
            confidence=self.args.model.confidence,
        )
        model.to(self.device).to(self.dtype)
        model.load_state_dict(ckpt['model'])
        model.eval()
        self.model = model
        self.wav2mel = Wav2Mel(self.args, dtype=self.dtype, device=self.device)

    @torch.no_grad()
    def __call__(self, audio, sr, threshold=0.05):
        self.model.threshold = threshold
        audio = audio[None,:]
        mel = self.wav2mel(audio=audio, sample_rate=sr).to(self.dtype)
        f0 = self.model(mel=mel, infer=True, return_hz_f0=True)
        return f0


class Wav2Mel:

    def __init__(self, args, device=None, dtype=torch.float32):
        # self.args = args
        self.sampling_rate = args.mel.sampling_rate
        self.hop_size = args.mel.hop_size
        if device is None:
            device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.device = device
        self.dtype = dtype
        self.stft = STFT(
            args.mel.sampling_rate,
            args.mel.num_mels,
            args.mel.n_fft,
            args.mel.win_size,
            args.mel.hop_size,
            args.mel.fmin,
            args.mel.fmax
        )
        self.resample_kernel = {}

    def extract_nvstft(self, audio, keyshift=0, train=False):
        mel = self.stft.get_mel(audio, keyshift=keyshift, train=train).transpose(1, 2)  # B, n_frames, bins
        return mel

    def extract_mel(self, audio, sample_rate, keyshift=0, train=False):
        audio = audio.to(self.dtype).to(self.device)
        # resample
        if sample_rate == self.sampling_rate:
            audio_res = audio
        else:
            key_str = str(sample_rate)
            if key_str not in self.resample_kernel:
                self.resample_kernel[key_str] = Resample(sample_rate, self.sampling_rate, lowpass_filter_width=128)
            self.resample_kernel[key_str] = self.resample_kernel[key_str].to(self.dtype).to(self.device)
            audio_res = self.resample_kernel[key_str](audio)

        # extract
        mel = self.extract_nvstft(audio_res, keyshift=keyshift, train=train)  # B, n_frames, bins
        n_frames = int(audio.shape[1] // self.hop_size) + 1
        if n_frames > int(mel.shape[1]):
            mel = torch.cat((mel, mel[:, -1:, :]), 1)
        if n_frames < int(mel.shape[1]):
            mel = mel[:, :n_frames, :]
        return mel

    def __call__(self, audio, sample_rate, keyshift=0, train=False):
        return self.extract_mel(audio, sample_rate, keyshift=keyshift, train=train)


class DotDict(dict):
    def __getattr__(*args):
        val = dict.get(*args)
        return DotDict(val) if type(val) is dict else val

    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

class F0Predictor(object):
    def compute_f0(self,wav,p_len):
        '''
        input: wav:[signal_length]
               p_len:int
        output: f0:[signal_length//hop_length]
        '''
        pass

    def compute_f0_uv(self,wav,p_len):
        '''
        input: wav:[signal_length]
               p_len:int
        output: f0:[signal_length//hop_length],uv:[signal_length//hop_length]
        '''
        pass

class FCPE(F0Predictor):
    def __init__(self, model_path, hop_length=512, f0_min=50, f0_max=1100, dtype=torch.float32, device=None, sampling_rate=44100,
                 threshold=0.05):
        self.fcpe = FCPEInfer(model_path, device=device, dtype=dtype)
        self.hop_length = hop_length
        self.f0_min = f0_min
        self.f0_max = f0_max
        if device is None:
            self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        else:
            self.device = device
        self.threshold = threshold
        self.sampling_rate = sampling_rate
        self.dtype = dtype
        self.name = "fcpe"

    def repeat_expand(
            self, content: Union[torch.Tensor, np.ndarray], target_len: int, mode: str = "nearest"
    ):
        ndim = content.ndim

        if content.ndim == 1:
            content = content[None, None]
        elif content.ndim == 2:
            content = content[None]

        assert content.ndim == 3

        is_np = isinstance(content, np.ndarray)
        if is_np:
            content = torch.from_numpy(content)

        results = torch.nn.functional.interpolate(content, size=target_len, mode=mode)

        if is_np:
            results = results.numpy()

        if ndim == 1:
            return results[0, 0]
        elif ndim == 2:
            return results[0]

    def post_process(self, x, sampling_rate, f0, pad_to):
        if isinstance(f0, np.ndarray):
            f0 = torch.from_numpy(f0).float().to(x.device)

        if pad_to is None:
            return f0

        f0 = self.repeat_expand(f0, pad_to)

        vuv_vector = torch.zeros_like(f0)
        vuv_vector[f0 > 0.0] = 1.0
        vuv_vector[f0 <= 0.0] = 0.0

        # 去掉0频率, 并线性插值
        nzindex = torch.nonzero(f0).squeeze()
        f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
        time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy()
        time_frame = np.arange(pad_to) * self.hop_length / sampling_rate

        vuv_vector = F.interpolate(vuv_vector[None, None, :], size=pad_to)[0][0]

        if f0.shape[0] <= 0:
            return torch.zeros(pad_to, dtype=torch.float, device=x.device).cpu().numpy(), vuv_vector.cpu().numpy()
        if f0.shape[0] == 1:
            return (torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[
                0]).cpu().numpy(), vuv_vector.cpu().numpy()

        # 大概可以用 torch 重写?
        f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
        # vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0))

        return f0, vuv_vector.cpu().numpy()

    def compute_f0(self, wav, p_len=None):
        x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
        if p_len is None:
            print("fcpe p_len is None")
            p_len = x.shape[0] // self.hop_length
        #else:
#            assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
        f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0,:,0]
        if torch.all(f0 == 0):
            rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
            return rtn, rtn
        return self.post_process(x, self.sampling_rate, f0, p_len)[0]

    def compute_f0_uv(self, wav, p_len=None):
        x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
        if p_len is None:
            p_len = x.shape[0] // self.hop_length
        #else:
#            assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
        f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0,:,0]
        if torch.all(f0 == 0):
            rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
            return rtn, rtn
        return self.post_process(x, self.sampling_rate, f0, p_len)