File size: 8,380 Bytes
199aa90
 
 
 
 
 
4a6e3e2
199aa90
af8d1a5
 
 
 
 
 
 
 
 
199aa90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a6e3e2
 
199aa90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a6e3e2
 
 
 
 
 
 
 
 
 
 
199aa90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a6e3e2
199aa90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import os
import shutil
import gc
import torch
from multiprocessing import cpu_count
from lib.modules import VC
from lib.language_tts import language_dict
from lib.split_audio import split_silence_nonsilent, adjust_audio_lengths, combine_silence_nonsilent
import edge_tts
import tempfile
import anyio







class Configs:
    def __init__(self, device, is_half):
        self.device = device
        self.is_half = is_half
        self.n_cpu = 0
        self.gpu_name = None
        self.gpu_mem = None
        self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()

    def device_config(self) -> tuple:
        if torch.cuda.is_available():
            i_device = int(self.device.split(":")[-1])
            self.gpu_name = torch.cuda.get_device_name(i_device)
            #if (
#                    ("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
#                    or "P40" in self.gpu_name.upper()
#                    or "1060" in self.gpu_name
#                    or "1070" in self.gpu_name
#                    or "1080" in self.gpu_name
#            ):
#                print("16 series/10 series P40 forced single precision")
#                self.is_half = False
#                for config_file in ["32k.json", "40k.json", "48k.json"]:
#                    with open(BASE_DIR / "src" / "configs" / config_file, "r") as f:
#                        strr = f.read().replace("true", "false")
#                    with open(BASE_DIR / "src" / "configs" / config_file, "w") as f:
#                        f.write(strr)
#                with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "r") as f:
#                    strr = f.read().replace("3.7", "3.0")
#                with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "w") as f:
#                    f.write(strr)
#            else:
#                self.gpu_name = None
#            self.gpu_mem = int(
#                torch.cuda.get_device_properties(i_device).total_memory
#                / 1024
#                / 1024
#                / 1024
#                + 0.4
#            )
#            if self.gpu_mem <= 4:
#                with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "r") as f:
#                    strr = f.read().replace("3.7", "3.0")
#                with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "w") as f:
#                    f.write(strr)
        elif torch.backends.mps.is_available():
            print("No supported N-card found, use MPS for inference")
            self.device = "mps"
        else:
            print("No supported N-card found, use CPU for inference")
            self.device = "cpu"

        if self.n_cpu == 0:
            self.n_cpu = cpu_count()

        if self.is_half:
            # 6G memory config
            x_pad = 3
            x_query = 10
            x_center = 60
            x_max = 65
        else:
            # 5G memory config
            x_pad = 1
            x_query = 6
            x_center = 38
            x_max = 41

        if self.gpu_mem != None and self.gpu_mem <= 4:
            x_pad = 1
            x_query = 5
            x_center = 30
            x_max = 32

        return x_pad, x_query, x_center, x_max

def get_model(voice_model):
    model_dir = os.path.join(os.getcwd(), "models", voice_model)
    model_filename, index_filename = None, None
    for file in os.listdir(model_dir):
        ext = os.path.splitext(file)[1]
        if ext == '.pth':
            model_filename = file
        if ext == '.index':
            index_filename = file

    if model_filename is None:
        print(f'No model file exists in {models_dir}.')
        return None, None

    return os.path.join(model_dir, model_filename), os.path.join(model_dir, index_filename) if index_filename else ''

def infer_audio(
    model_name,
    text,
    language_code,
    f0_change=0,
    f0_method="rmvpe",
    min_pitch="50",
    max_pitch="1100",
    crepe_hop_length=128,
    index_rate=0.75,
    filter_radius=3,
    rms_mix_rate=0.25,
    protect=0.33,
    split_infer=False,
    min_silence=500,
    silence_threshold=-50,
    seek_step=1,
    keep_silence=100,
    do_formant=False,
    quefrency=0,
    timbre=1,
    f0_autotune=False,
    audio_format="wav",
    resample_sr=0,
    hubert_model_path="hubert_base.pt",
    rmvpe_model_path="rmvpe.pt",
    fcpe_model_path="fcpe.pt"
    ):
    os.environ["rmvpe_model_path"] = rmvpe_model_path
    os.environ["fcpe_model_path"] = fcpe_model_path
    configs = Configs('cuda:0', True)
    vc = VC(configs)
    pth_path, index_path = get_model(model_name)
    vc_data = vc.get_vc(pth_path, protect, 0.5)


    voice = language_dict.get(language_code, "default_voice")
    communicate = edge_tts.Communicate(text, voice)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)




    
    if split_infer:
        inferred_files = []
        temp_dir = os.path.join(os.getcwd(), "seperate", "temp")
        os.makedirs(temp_dir, exist_ok=True)
        print("Splitting audio to silence and nonsilent segments.")
        silence_files, nonsilent_files = split_silence_nonsilent(audio_path, min_silence, silence_threshold, seek_step, keep_silence)
        print(f"Total silence segments: {len(silence_files)}.\nTotal nonsilent segments: {len(nonsilent_files)}.")
        for i, nonsilent_file in enumerate(nonsilent_files):
            print(f"Inferring nonsilent audio {i+1}")
            inference_info, audio_data, output_path = vc.vc_single(
            0,
            nonsilent_file,
            f0_change,
            f0_method,
            index_path,
            index_path,
            index_rate,
            filter_radius,
            resample_sr,
            rms_mix_rate,
            protect,
            audio_format,
            crepe_hop_length,
            do_formant,
            quefrency,
            timbre,
            min_pitch,
            max_pitch,
            f0_autotune,
            hubert_model_path
            )
            if inference_info[0] == "Success.":
                print("Inference ran successfully.")
                print(inference_info[1])
                print("Times:\nnpy: %.2fs f0: %.2fs infer: %.2fs\nTotal time: %.2fs" % (*inference_info[2],))
            else:
                print(f"An error occurred while processing.\n{inference_info[0]}")
                return None
            inferred_files.append(output_path)
        print("Adjusting inferred audio lengths.")
        adjusted_inferred_files = adjust_audio_lengths(nonsilent_files, inferred_files)
        print("Combining silence and inferred audios.")
        output_count = 1
        while True:
            output_path = os.path.join(os.getcwd(), "output", f"{os.path.splitext(os.path.basename(audio_path))[0]}{model_name}{f0_method.capitalize()}_{output_count}.{audio_format}")
            if not os.path.exists(output_path):
                break
            output_count += 1
        output_path = combine_silence_nonsilent(silence_files, adjusted_inferred_files, keep_silence, output_path)
        [shutil.move(inferred_file, temp_dir) for inferred_file in inferred_files]
        shutil.rmtree(temp_dir)
    else:
        inference_info, audio_data, output_path = vc.vc_single(
            0,
            audio_path=tmp_path,
            f0_change,
            f0_method,
            index_path,
            index_path,
            index_rate,
            filter_radius,
            resample_sr,
            rms_mix_rate,
            protect,
            audio_format,
            crepe_hop_length,
            do_formant,
            quefrency,
            timbre,
            min_pitch,
            max_pitch,
            f0_autotune,
            hubert_model_path
        )
        if inference_info[0] == "Success.":
            print("Inference ran successfully.")
            print(inference_info[1])
            print("Times:\nnpy: %.2fs f0: %.2fs infer: %.2fs\nTotal time: %.2fs" % (*inference_info[2],))
        else:
            print(f"An error occurred while processing.\n{inference_info[0]}")
            del configs, vc
            gc.collect()
            return inference_info[0]
    
    del configs, vc
    gc.collect()
    return output_path