File size: 8,380 Bytes
199aa90 4a6e3e2 199aa90 af8d1a5 199aa90 4a6e3e2 199aa90 4a6e3e2 199aa90 4a6e3e2 199aa90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import os
import shutil
import gc
import torch
from multiprocessing import cpu_count
from lib.modules import VC
from lib.language_tts import language_dict
from lib.split_audio import split_silence_nonsilent, adjust_audio_lengths, combine_silence_nonsilent
import edge_tts
import tempfile
import anyio
class Configs:
def __init__(self, device, is_half):
self.device = device
self.is_half = is_half
self.n_cpu = 0
self.gpu_name = None
self.gpu_mem = None
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
def device_config(self) -> tuple:
if torch.cuda.is_available():
i_device = int(self.device.split(":")[-1])
self.gpu_name = torch.cuda.get_device_name(i_device)
#if (
# ("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
# or "P40" in self.gpu_name.upper()
# or "1060" in self.gpu_name
# or "1070" in self.gpu_name
# or "1080" in self.gpu_name
# ):
# print("16 series/10 series P40 forced single precision")
# self.is_half = False
# for config_file in ["32k.json", "40k.json", "48k.json"]:
# with open(BASE_DIR / "src" / "configs" / config_file, "r") as f:
# strr = f.read().replace("true", "false")
# with open(BASE_DIR / "src" / "configs" / config_file, "w") as f:
# f.write(strr)
# with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "r") as f:
# strr = f.read().replace("3.7", "3.0")
# with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "w") as f:
# f.write(strr)
# else:
# self.gpu_name = None
# self.gpu_mem = int(
# torch.cuda.get_device_properties(i_device).total_memory
# / 1024
# / 1024
# / 1024
# + 0.4
# )
# if self.gpu_mem <= 4:
# with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "r") as f:
# strr = f.read().replace("3.7", "3.0")
# with open(BASE_DIR / "src" / "trainset_preprocess_pipeline_print.py", "w") as f:
# f.write(strr)
elif torch.backends.mps.is_available():
print("No supported N-card found, use MPS for inference")
self.device = "mps"
else:
print("No supported N-card found, use CPU for inference")
self.device = "cpu"
if self.n_cpu == 0:
self.n_cpu = cpu_count()
if self.is_half:
# 6G memory config
x_pad = 3
x_query = 10
x_center = 60
x_max = 65
else:
# 5G memory config
x_pad = 1
x_query = 6
x_center = 38
x_max = 41
if self.gpu_mem != None and self.gpu_mem <= 4:
x_pad = 1
x_query = 5
x_center = 30
x_max = 32
return x_pad, x_query, x_center, x_max
def get_model(voice_model):
model_dir = os.path.join(os.getcwd(), "models", voice_model)
model_filename, index_filename = None, None
for file in os.listdir(model_dir):
ext = os.path.splitext(file)[1]
if ext == '.pth':
model_filename = file
if ext == '.index':
index_filename = file
if model_filename is None:
print(f'No model file exists in {models_dir}.')
return None, None
return os.path.join(model_dir, model_filename), os.path.join(model_dir, index_filename) if index_filename else ''
def infer_audio(
model_name,
text,
language_code,
f0_change=0,
f0_method="rmvpe",
min_pitch="50",
max_pitch="1100",
crepe_hop_length=128,
index_rate=0.75,
filter_radius=3,
rms_mix_rate=0.25,
protect=0.33,
split_infer=False,
min_silence=500,
silence_threshold=-50,
seek_step=1,
keep_silence=100,
do_formant=False,
quefrency=0,
timbre=1,
f0_autotune=False,
audio_format="wav",
resample_sr=0,
hubert_model_path="hubert_base.pt",
rmvpe_model_path="rmvpe.pt",
fcpe_model_path="fcpe.pt"
):
os.environ["rmvpe_model_path"] = rmvpe_model_path
os.environ["fcpe_model_path"] = fcpe_model_path
configs = Configs('cuda:0', True)
vc = VC(configs)
pth_path, index_path = get_model(model_name)
vc_data = vc.get_vc(pth_path, protect, 0.5)
voice = language_dict.get(language_code, "default_voice")
communicate = edge_tts.Communicate(text, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
if split_infer:
inferred_files = []
temp_dir = os.path.join(os.getcwd(), "seperate", "temp")
os.makedirs(temp_dir, exist_ok=True)
print("Splitting audio to silence and nonsilent segments.")
silence_files, nonsilent_files = split_silence_nonsilent(audio_path, min_silence, silence_threshold, seek_step, keep_silence)
print(f"Total silence segments: {len(silence_files)}.\nTotal nonsilent segments: {len(nonsilent_files)}.")
for i, nonsilent_file in enumerate(nonsilent_files):
print(f"Inferring nonsilent audio {i+1}")
inference_info, audio_data, output_path = vc.vc_single(
0,
nonsilent_file,
f0_change,
f0_method,
index_path,
index_path,
index_rate,
filter_radius,
resample_sr,
rms_mix_rate,
protect,
audio_format,
crepe_hop_length,
do_formant,
quefrency,
timbre,
min_pitch,
max_pitch,
f0_autotune,
hubert_model_path
)
if inference_info[0] == "Success.":
print("Inference ran successfully.")
print(inference_info[1])
print("Times:\nnpy: %.2fs f0: %.2fs infer: %.2fs\nTotal time: %.2fs" % (*inference_info[2],))
else:
print(f"An error occurred while processing.\n{inference_info[0]}")
return None
inferred_files.append(output_path)
print("Adjusting inferred audio lengths.")
adjusted_inferred_files = adjust_audio_lengths(nonsilent_files, inferred_files)
print("Combining silence and inferred audios.")
output_count = 1
while True:
output_path = os.path.join(os.getcwd(), "output", f"{os.path.splitext(os.path.basename(audio_path))[0]}{model_name}{f0_method.capitalize()}_{output_count}.{audio_format}")
if not os.path.exists(output_path):
break
output_count += 1
output_path = combine_silence_nonsilent(silence_files, adjusted_inferred_files, keep_silence, output_path)
[shutil.move(inferred_file, temp_dir) for inferred_file in inferred_files]
shutil.rmtree(temp_dir)
else:
inference_info, audio_data, output_path = vc.vc_single(
0,
audio_path=tmp_path,
f0_change,
f0_method,
index_path,
index_path,
index_rate,
filter_radius,
resample_sr,
rms_mix_rate,
protect,
audio_format,
crepe_hop_length,
do_formant,
quefrency,
timbre,
min_pitch,
max_pitch,
f0_autotune,
hubert_model_path
)
if inference_info[0] == "Success.":
print("Inference ran successfully.")
print(inference_info[1])
print("Times:\nnpy: %.2fs f0: %.2fs infer: %.2fs\nTotal time: %.2fs" % (*inference_info[2],))
else:
print(f"An error occurred while processing.\n{inference_info[0]}")
del configs, vc
gc.collect()
return inference_info[0]
del configs, vc
gc.collect()
return output_path |