File size: 13,722 Bytes
903ebdd 61bdae6 903ebdd 61bdae6 903ebdd 953b9e7 3b67f5f 057b246 cccb6a1 057b246 0938a64 057b246 ffa6c72 3b67f5f 61bdae6 953b9e7 ffa6c72 953b9e7 903ebdd 953b9e7 903ebdd 3b67f5f 057b246 0938a64 953b9e7 672e69b 953b9e7 a20f4f4 953b9e7 2321e68 fa9081b 953b9e7 2321e68 b90009b 2321e68 953b9e7 2321e68 3b67f5f 082354e 2321e68 953b9e7 2321e68 953b9e7 2321e68 903ebdd d9d328f 057b246 082354e 61bdae6 76242c8 ffa6c72 4d8d235 61bdae6 4d8d235 61bdae6 ffa6c72 61bdae6 903ebdd 0938a64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import os
import re
import random
from scipy.io.wavfile import write
from scipy.io.wavfile import read
import numpy as np
import gradio as gr
import yt_dlp
import subprocess
from pydub import AudioSegment
from audio_separator.separator import Separator
from lib.infer import infer_audio
import edge_tts
import tempfile
import anyio
from pathlib import Path
from lib.language_tts import language_dict
import os
import zipfile
import shutil
import urllib.request
import gdown
import subprocess
from argparse import ArgumentParser
main_dir = Path().resolve()
print(main_dir)
os.chdir(main_dir)
models_dir = "models"
audio_separat_dir = main_dir / "audio_input"
def download_audio(url):
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': 'ytdl/%(title)s.%(ext)s',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
'preferredquality': '192',
}],
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(url, download=True)
file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav'
sample_rate, audio_data = read(file_path)
audio_array = np.asarray(audio_data, dtype=np.int16)
return sample_rate, audio_array
# Define a function to handle the entire separation process
def separate_audio(input_audio, model_voc_inst, model_deecho, model_back_voc):
output_dir = audio_separat_dir
separator = Separator(output_dir=output_dir)
# Define output files
vocals = os.path.join(output_dir, 'Vocals.wav')
instrumental = os.path.join(output_dir, 'Instrumental.wav')
vocals_reverb = os.path.join(output_dir, 'Vocals (Reverb).wav')
vocals_no_reverb = os.path.join(output_dir, 'Vocals (No Reverb).wav')
lead_vocals = os.path.join(output_dir, 'Lead Vocals.wav')
backing_vocals = os.path.join(output_dir, 'Backing Vocals.wav')
# Splitting a track into Vocal and Instrumental
separator.load_model(model_filename=model_voc_inst)
voc_inst = separator.separate(input_audio)
os.rename(os.path.join(output_dir, voc_inst[0]), instrumental) # Rename to “Instrumental.wav”
os.rename(os.path.join(output_dir, voc_inst[1]), vocals) # Rename to “Vocals.wav”
# Applying DeEcho-DeReverb to Vocals
separator.load_model(model_filename=model_deecho)
voc_no_reverb = separator.separate(vocals)
os.rename(os.path.join(output_dir, voc_no_reverb[0]), vocals_no_reverb) # Rename to “Vocals (No Reverb).wav”
os.rename(os.path.join(output_dir, voc_no_reverb[1]), vocals_reverb) # Rename to “Vocals (Reverb).wav”
# Separating Back Vocals from Main Vocals
separator.load_model(model_filename=model_back_voc)
backing_voc = separator.separate(vocals_no_reverb)
os.rename(os.path.join(output_dir, backing_voc[0]), backing_vocals) # Rename to “Backing Vocals.wav”
os.rename(os.path.join(output_dir, backing_voc[1]), lead_vocals) # Rename to “Lead Vocals.wav”
return instrumental, vocals, vocals_reverb, vocals_no_reverb, lead_vocals, backing_vocals
# Main function to process audio (Inference)
def process_audio(MODEL_NAME, SOUND_PATH, F0_CHANGE, F0_METHOD, MIN_PITCH, MAX_PITCH, CREPE_HOP_LENGTH, INDEX_RATE,
FILTER_RADIUS, RMS_MIX_RATE, PROTECT, SPLIT_INFER, MIN_SILENCE, SILENCE_THRESHOLD, SEEK_STEP,
KEEP_SILENCE, FORMANT_SHIFT, QUEFRENCY, TIMBRE, F0_AUTOTUNE, OUTPUT_FORMAT, upload_audio=None):
# If no sound path is given, use the uploaded file
if not SOUND_PATH and upload_audio is not None:
SOUND_PATH = os.path.join("uploaded_audio", upload_audio.name)
with open(SOUND_PATH, "wb") as f:
f.write(upload_audio.read())
# Check if a model name is provided
if not MODEL_NAME:
return "Please provide a model name."
# Run the inference
os.system("chmod +x stftpitchshift")
inferred_audio = infer_audio(
MODEL_NAME,
SOUND_PATH,
F0_CHANGE,
F0_METHOD,
MIN_PITCH,
MAX_PITCH,
CREPE_HOP_LENGTH,
INDEX_RATE,
FILTER_RADIUS,
RMS_MIX_RATE,
PROTECT,
SPLIT_INFER,
MIN_SILENCE,
SILENCE_THRESHOLD,
SEEK_STEP,
KEEP_SILENCE,
FORMANT_SHIFT,
QUEFRENCY,
TIMBRE,
F0_AUTOTUNE,
OUTPUT_FORMAT
)
return inferred_audio
async def text_to_speech_edge(text, language_code):
voice = language_dict.get(language_code, "default_voice")
communicate = edge_tts.Communicate(text, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
def extract_zip(extraction_folder, zip_name):
os.makedirs(extraction_folder)
with zipfile.ZipFile(zip_name, 'r') as zip_ref:
zip_ref.extractall(extraction_folder)
os.remove(zip_name)
index_filepath, model_filepath = None, None
for root, dirs, files in os.walk(extraction_folder):
for name in files:
if name.endswith('.index') and os.stat(os.path.join(root, name)).st_size > 1024 * 100:
index_filepath = os.path.join(root, name)
if name.endswith('.pth') and os.stat(os.path.join(root, name)).st_size > 1024 * 1024 * 40:
model_filepath = os.path.join(root, name)
if not model_filepath:
raise Exception(f'No .pth model file was found in the extracted zip. Please check {extraction_folder}.')
# move model and index file to extraction folder
os.rename(model_filepath, os.path.join(extraction_folder, os.path.basename(model_filepath)))
if index_filepath:
os.rename(index_filepath, os.path.join(extraction_folder, os.path.basename(index_filepath)))
# remove any unnecessary nested folders
for filepath in os.listdir(extraction_folder):
if os.path.isdir(os.path.join(extraction_folder, filepath)):
shutil.rmtree(os.path.join(extraction_folder, filepath))
def download_online_model(url, dir_name):
try:
print(f'[~] Downloading voice model with name {dir_name}...')
zip_name = url.split('/')[-1]
extraction_folder = os.path.join(models_dir, dir_name)
if os.path.exists(extraction_folder):
raise Exception(f'Voice model directory {dir_name} already exists! Choose a different name for your voice model.')
if 'pixeldrain.com' in url:
url = f'https://pixeldrain.com/api/file/{zip_name}'
if 'drive.google.com' in url:
zip_name = dir_name + ".zip"
gdown.download(url, output=zip_name, use_cookies=True, quiet=True, fuzzy=True)
else:
urllib.request.urlretrieve(url, zip_name)
print(f'[~] Extracting zip file...')
extract_zip(extraction_folder, zip_name)
print(f'[+] {dir_name} Model successfully downloaded!')
except Exception as e:
raise Exception(str(e))
if __name__ == '__main__':
parser = ArgumentParser(description='Generate a AI song in the song_output/id directory.', add_help=True)
parser.add_argument("--share", action="store_true", dest="share_enabled", default=False, help="Enable sharing")
parser.add_argument("--listen", action="store_true", default=False, help="Make the UI reachable from your local network.")
parser.add_argument('--listen-host', type=str, help='The hostname that the server will use.')
parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
args = parser.parse_args()
# Gradio Blocks Interface with Tabs
with gr.Blocks(title="Hex RVC", theme=gr.themes.Default(primary_hue="red", secondary_hue="pink")) as app:
gr.Markdown("# Hex RVC")
gr.Markdown(" join [AIHub](https://discord.gg/aihub) to get the rvc model!")
with gr.Tab("Inference"):
with gr.Row():
MODEL_NAME = gr.Textbox(label="Model Name", placeholder="Enter model name")
SOUND_PATH = gr.Textbox(label="Audio Path (Optional)", placeholder="Leave blank to upload audio")
upload_audio = gr.Audio(label="Upload Audio", type='filepath')
with gr.Row():
F0_CHANGE = gr.Number(label="Pitch Change (semitones)", value=0)
F0_METHOD = gr.Dropdown(choices=["crepe", "harvest", "mangio-crepe", "rmvpe", "rmvpe+", "fcpe", "hybrid[rmvpe+fcpe]"],
label="F0 Method", value="fcpe")
with gr.Row():
MIN_PITCH = gr.Textbox(label="Min Pitch", value="50")
MAX_PITCH = gr.Textbox(label="Max Pitch", value="1100")
CREPE_HOP_LENGTH = gr.Number(label="Crepe Hop Length", value=120)
INDEX_RATE = gr.Slider(label="Index Rate", minimum=0, maximum=1, value=0.75)
FILTER_RADIUS = gr.Number(label="Filter Radius", value=3)
RMS_MIX_RATE = gr.Slider(label="RMS Mix Rate", minimum=0, maximum=1, value=0.25)
PROTECT = gr.Slider(label="Protect", minimum=0, maximum=1, value=0.33)
with gr.Accordion("Hex TTS"):
input_text = gr.Textbox(lines=5, label="Input Text")
#output_text = gr.Textbox(label="Output Text")
#output_audio = gr.Audio(type="filepath", label="Exported Audio")
language = gr.Dropdown(choices=list(language_dict.keys()), label="Choose the Voice Model")
tts_convert = gr.Button("Convert")
tts_convert.click(fn=text_to_speech_edge, inputs=[input_text, language], outputs=[upload_audio])
with gr.Accordion("Advanced Settings", open=False):
SPLIT_INFER = gr.Checkbox(label="Enable Split Inference", value=False)
MIN_SILENCE = gr.Number(label="Min Silence (ms)", value=500)
SILENCE_THRESHOLD = gr.Number(label="Silence Threshold (dBFS)", value=-50)
SEEK_STEP = gr.Slider(label="Seek Step (ms)", minimum=1, maximum=10, value=1)
KEEP_SILENCE = gr.Number(label="Keep Silence (ms)", value=200)
FORMANT_SHIFT = gr.Checkbox(label="Enable Formant Shift", value=False)
QUEFRENCY = gr.Number(label="Quefrency", value=0)
TIMBRE = gr.Number(label="Timbre", value=1)
F0_AUTOTUNE = gr.Checkbox(label="Enable F0 Autotune", value=False)
OUTPUT_FORMAT = gr.Dropdown(choices=["wav", "flac", "mp3"], label="Output Format", value="wav")
run_button = gr.Button("Run Inference")
output_audio = gr.Audio(label="Generated Audio", type='filepath')
run_button.click(
process_audio,
inputs=[MODEL_NAME, SOUND_PATH, F0_CHANGE, F0_METHOD, MIN_PITCH, MAX_PITCH, CREPE_HOP_LENGTH, INDEX_RATE,
FILTER_RADIUS, RMS_MIX_RATE, PROTECT, SPLIT_INFER, MIN_SILENCE, SILENCE_THRESHOLD, SEEK_STEP,
KEEP_SILENCE, FORMANT_SHIFT, QUEFRENCY, TIMBRE, F0_AUTOTUNE, OUTPUT_FORMAT, upload_audio],
outputs=output_audio
)
with gr.Tab("Download RVC Model"):
url = gr.Textbox(label="Your model URL")
dirname = gr.Textbox(label="Your Model name")
button_model = gr.Button("Download model")
button_model.click(fn=download_online_model, inputs=[url, dirname], outputs=[dirname])
with gr.Tab("Audio Separation"):
with gr.Row():
input_audio = gr.Audio(type="filepath", label="Upload Audio File")
with gr.Row():
with gr.Accordion("Separation by Link", open = False):
with gr.Row():
roformer_link = gr.Textbox(
label = "Link",
placeholder = "Paste the link here",
interactive = True
)
with gr.Row():
gr.Markdown("You can paste the link to the video/audio from many sites, check the complete list [here](https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md)")
with gr.Row():
roformer_download_button = gr.Button(
"Download!",
variant = "primary"
)
roformer_download_button.click(download_audio, [roformer_link], [input_audio])
with gr.Row():
model_voc_inst = gr.Textbox(value='model_bs_roformer_ep_317_sdr_12.9755.ckpt', label="Vocal & Instrumental Model", visible=False)
model_deecho = gr.Textbox(value='UVR-DeEcho-DeReverb.pth', label="DeEcho-DeReverb Model", visible=False)
model_back_voc = gr.Textbox(value='mel_band_roformer_karaoke_aufr33_viperx_sdr_10.1956.ckpt', label="Backing Vocals Model", visible=False)
separate_button = gr.Button("Separate Audio")
with gr.Row():
instrumental_out = gr.Audio(label="Instrumental")
vocals_out = gr.Audio(label="Vocals")
vocals_reverb_out = gr.Audio(label="Vocals (Reverb)")
vocals_no_reverb_out = gr.Audio(label="Vocals (No Reverb)")
lead_vocals_out = gr.Audio(label="Lead Vocals")
backing_vocals_out = gr.Audio(label="Backing Vocals")
separate_button.click(
separate_audio,
inputs=[input_audio, model_voc_inst, model_deecho, model_back_voc],
outputs=[instrumental_out, vocals_out, vocals_reverb_out, vocals_no_reverb_out, lead_vocals_out, backing_vocals_out]
)
# Launch the Gradio app
app.launch(
share=args.share_enabled,
server_name=None if not args.listen else (args.listen_host or '0.0.0.0'),
server_port=args.listen_port,
)
|