HeyLucasLeao
commited on
Commit
•
ec5f659
1
Parent(s):
8c66b04
Update README.md
Browse files
README.md
CHANGED
@@ -1 +1,68 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Create README.md
|
2 |
+
## ByT5 Small Portuguese Product Reviews
|
3 |
+
|
4 |
+
#### Model Description
|
5 |
+
This is a finetuned version from ByT5 by Google for Sentimental Analysis from Product Reviews in Portuguese.
|
6 |
+
|
7 |
+
#### Training data
|
8 |
+
It was trained from products reviews from a Americanas.com. You can found the data here: https://github.com/b2wdigital/b2w-reviews01.
|
9 |
+
|
10 |
+
#### Training Procedure
|
11 |
+
It was finetuned using the Trainer Class available on the Hugging Face library. For evaluation it was used accuracy, precision, recall and f1 score.
|
12 |
+
|
13 |
+
##### Learning Rate: **2e-4**
|
14 |
+
##### Epochs: **1**
|
15 |
+
##### Colab for Finetuning: https://colab.research.google.com/drive/1EChTeQkGeXi_52lClBNazHVuSNKEHN2f
|
16 |
+
##### Colab for Metrics: https://colab.research.google.com/drive/1o4tcsP3lpr1TobtE3Txhp9fllxPWXxlw#scrollTo=PXAoog5vQaTn
|
17 |
+
#### Score:
|
18 |
+
```python
|
19 |
+
Training Set:
|
20 |
+
'accuracy': 0.8699743370402053,
|
21 |
+
'f1': 0.9072110777980404,
|
22 |
+
'precision': 0.9432919284600922,
|
23 |
+
'recall': 0.8737887200250071
|
24 |
+
|
25 |
+
Test Set:
|
26 |
+
'accuracy': 0.8680854858365782,
|
27 |
+
'f1': 0.9058389204786557,
|
28 |
+
'precision': 0.9420980625799903,
|
29 |
+
'recall': 0.8722673967229191
|
30 |
+
|
31 |
+
Validation Set:
|
32 |
+
'accuracy': 0.8662624220987031,
|
33 |
+
'f1': 0.9042450554751569,
|
34 |
+
'precision': 0.9436194311603322,
|
35 |
+
'recall': 0.8680250057883769
|
36 |
+
```
|
37 |
+
|
38 |
+
#### Goals
|
39 |
+
|
40 |
+
My true intention was totally educational, thus making available a this version of the model as a example for future proposes.
|
41 |
+
|
42 |
+
How to use
|
43 |
+
``` python
|
44 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
45 |
+
import torch
|
46 |
+
|
47 |
+
if torch.cuda.is_available():
|
48 |
+
device = torch.device('cuda')
|
49 |
+
else:
|
50 |
+
device = torch.device('cpu')
|
51 |
+
print(device)
|
52 |
+
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained("HeyLucasLeao/byt5-small-pt-product-reviews")
|
54 |
+
|
55 |
+
model = AutoModelForCausalLM.from_pretrained("HeyLucasLeao/byt5-small-pt-product-reviews")
|
56 |
+
model.to(device)
|
57 |
+
|
58 |
+
def classificar_review(review):
|
59 |
+
inputs = tokenizer([review], padding='max_length', truncation=True, max_length=512, return_tensors='pt')
|
60 |
+
input_ids = inputs.input_ids.to(device)
|
61 |
+
attention_mask = inputs.attention_mask.to(device)
|
62 |
+
output = model.generate(input_ids, attention_mask=attention_mask)
|
63 |
+
pred = np.argmax(output.cpu(), axis=1)
|
64 |
+
dici = {0: 'Review Negativo', 1: 'Review Positivo'}
|
65 |
+
return dici[pred.item()]
|
66 |
+
|
67 |
+
classificar_review(review)
|
68 |
+
```
|