File size: 3,769 Bytes
66f70ae
0bf49b2
587610c
0bf49b2
 
 
 
 
 
587610c
0bf49b2
 
 
66f70ae
 
0bf49b2
 
 
 
 
 
 
c9cc9de
 
 
 
 
 
 
0bf49b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9cc9de
0bf49b2
 
 
 
 
 
c9cc9de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66f70ae
 
 
 
587610c
0bf49b2
 
 
587610c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: mit
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
metrics:
- rouge
base_model: TheBloke/zephyr-7B-beta-GPTQ
model-index:
- name: zephyr-Me
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-Me

This model is a fine-tuned version of [TheBloke/zephyr-7B-beta-GPTQ](https://huggingface.co/TheBloke/zephyr-7B-beta-GPTQ) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0107
- Rouge1: 0.7127
- Rouge2: 0.4797
- Rougel: 0.6694
- Rougelsum: 0.6951
- Meteor: 0.7003
- F1 Score: 0.0010

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Meteor | F1 Score |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:------:|:--------:|
| 2.1273        | 0.15  | 4    | 2.0726          | 0.4931 | 0.1866 | 0.4166 | 0.4753    | 0.4834 | 0.0077   |
| 1.6907        | 0.3   | 8    | 1.5193          | 0.6035 | 0.3389 | 0.5483 | 0.5905    | 0.5816 | 0.0010   |
| 1.3096        | 0.44  | 12   | 1.3236          | 0.6571 | 0.4159 | 0.6080 | 0.6386    | 0.6473 | 0.0008   |
| 1.1588        | 0.59  | 16   | 1.2651          | 0.6652 | 0.4210 | 0.6174 | 0.6455    | 0.6528 | 0.0008   |
| 1.1038        | 0.74  | 20   | 1.1852          | 0.6772 | 0.4239 | 0.6274 | 0.6557    | 0.6570 | 0.0008   |
| 1.0362        | 0.89  | 24   | 1.1448          | 0.6750 | 0.4256 | 0.6278 | 0.6547    | 0.6613 | 0.0008   |
| 1.0733        | 1.04  | 28   | 1.1137          | 0.6864 | 0.4397 | 0.6379 | 0.6655    | 0.6743 | 0.0008   |
| 0.8783        | 1.19  | 32   | 1.1179          | 0.6914 | 0.4510 | 0.6430 | 0.6680    | 0.6813 | 0.0010   |
| 0.8761        | 1.33  | 36   | 1.1020          | 0.6984 | 0.4545 | 0.6497 | 0.6768    | 0.6865 | 0.0010   |
| 0.8774        | 1.48  | 40   | 1.0696          | 0.7033 | 0.4604 | 0.6549 | 0.6834    | 0.6908 | 0.0010   |
| 0.8621        | 1.63  | 44   | 1.0485          | 0.7030 | 0.4642 | 0.6568 | 0.6850    | 0.6915 | 0.0010   |
| 0.8143        | 1.78  | 48   | 1.0334          | 0.7064 | 0.4670 | 0.6601 | 0.6874    | 0.6929 | 0.0010   |
| 0.7483        | 1.93  | 52   | 1.0232          | 0.7060 | 0.4681 | 0.6606 | 0.6868    | 0.6940 | 0.0010   |
| 0.7647        | 2.07  | 56   | 1.0148          | 0.7058 | 0.4700 | 0.6623 | 0.6884    | 0.6886 | 0.0010   |
| 0.6659        | 2.22  | 60   | 1.0135          | 0.7088 | 0.4737 | 0.6655 | 0.6917    | 0.6952 | 0.0010   |
| 0.7135        | 2.37  | 64   | 1.0098          | 0.7132 | 0.4783 | 0.6699 | 0.6948    | 0.6989 | 0.0010   |
| 0.6685        | 2.52  | 68   | 1.0123          | 0.7116 | 0.4787 | 0.6687 | 0.6939    | 0.6995 | 0.0010   |
| 0.6538        | 2.67  | 72   | 1.0113          | 0.7145 | 0.4811 | 0.6705 | 0.6966    | 0.7030 | 0.0010   |
| 0.6648        | 2.81  | 76   | 1.0108          | 0.7132 | 0.4800 | 0.6694 | 0.6955    | 0.7011 | 0.0010   |
| 0.6278        | 2.96  | 80   | 1.0107          | 0.7127 | 0.4797 | 0.6694 | 0.6951    | 0.7003 | 0.0010   |


### Framework versions

- PEFT 0.7.1
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0