--- license: gemma library_name: peft tags: - trl - reward-trainer - generated_from_trainer base_model: google/gemma-2b metrics: - accuracy model-index: - name: RM-HH-AllMix_harmless_gpt3_20000_gemma2b_shuffleTrue_extractchosenTrue results: [] --- # RM-HH-AllMix_harmless_gpt3_20000_gemma2b_shuffleTrue_extractchosenTrue This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5277 - Accuracy: 0.7168 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.41e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8315 | 0.04 | 250 | 0.7587 | 0.5337 | | 0.7136 | 0.08 | 500 | 0.6394 | 0.6303 | | 0.6091 | 0.13 | 750 | 0.6058 | 0.6544 | | 0.6005 | 0.17 | 1000 | 0.5916 | 0.6634 | | 0.5844 | 0.21 | 1250 | 0.5839 | 0.6743 | | 0.5823 | 0.25 | 1500 | 0.5729 | 0.6796 | | 0.5845 | 0.29 | 1750 | 0.5629 | 0.6815 | | 0.5726 | 0.33 | 2000 | 0.5599 | 0.6833 | | 0.5564 | 0.38 | 2250 | 0.5675 | 0.6886 | | 0.5681 | 0.42 | 2500 | 0.5550 | 0.6912 | | 0.5713 | 0.46 | 2750 | 0.5367 | 0.6897 | | 0.5403 | 0.5 | 3000 | 0.5392 | 0.6980 | | 0.5299 | 0.54 | 3250 | 0.5502 | 0.7029 | | 0.5397 | 0.59 | 3500 | 0.5411 | 0.7025 | | 0.5629 | 0.63 | 3750 | 0.5377 | 0.7048 | | 0.5307 | 0.67 | 4000 | 0.5290 | 0.7119 | | 0.5154 | 0.71 | 4250 | 0.5322 | 0.7104 | | 0.5307 | 0.75 | 4500 | 0.5363 | 0.7123 | | 0.5414 | 0.79 | 4750 | 0.5320 | 0.7161 | | 0.5444 | 0.84 | 5000 | 0.5269 | 0.7194 | | 0.4831 | 0.88 | 5250 | 0.5325 | 0.7183 | | 0.528 | 0.92 | 5500 | 0.5281 | 0.7187 | | 0.527 | 0.96 | 5750 | 0.5277 | 0.7168 | ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2