File size: 5,770 Bytes
1e3fb02 1505f97 1e3fb02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: other
tags:
- generated_from_trainer
base_model: boun-tabi-LMG/TURNA
metrics:
- rouge
- bleu
model-index:
- name: TURNA_spell_correction_product_search
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# TURNA_spell_correction_product_search
This model is a fine-tuned version of [boun-tabi-LMG/TURNA](https://huggingface.co/boun-tabi-LMG/TURNA) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1088
- Rouge1: 0.8437
- Rouge2: 0.7401
- Rougel: 0.8435
- Rougelsum: 0.8437
- Bleu: 0.8713
- Precisions: [0.8736109932988378, 0.8306083370157608, 0.8473118279569892, 0.9631336405529954]
- Brevity Penalty: 0.9932
- Length Ratio: 0.9933
- Translation Length: 11789
- Reference Length: 11869
- Meteor: 0.7484
- Score: 14.6658
- Num Edits: 1709
- Ref Length: 11653.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Meteor | Score | Num Edits | Ref Length |
|:-------------:|:------:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:------:|:--------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:|:------:|:-------:|:---------:|:----------:|
| No log | 0.3335 | 1253 | 0.2447 | 0.7099 | 0.5537 | 0.7097 | 0.7097 | 0.7033 | [0.7548184082863512, 0.6378386771213415, 0.6301176470588236, 0.906832298136646] | 0.9711 | 0.9715 | 22881 | 23553 | 0.5852 | 27.8452 | 6474 | 23250.0 |
| No log | 0.6670 | 2506 | 0.1886 | 0.7586 | 0.6231 | 0.7584 | 0.7585 | 0.7555 | [0.7995148154565933, 0.7114032405992051, 0.7142528735632184, 0.8698224852071006] | 0.9799 | 0.9801 | 23084 | 23553 | 0.6454 | 22.8860 | 5321 | 23250.0 |
| 0.3827 | 1.0005 | 3759 | 0.1571 | 0.7810 | 0.6561 | 0.7807 | 0.7809 | 0.7947 | [0.8183424557169332, 0.7418011058092858, 0.7430269775948788, 0.939297124600639] | 0.9850 | 0.9851 | 23203 | 23553 | 0.6742 | 20.6710 | 4806 | 23250.0 |
| 0.3827 | 1.3340 | 5012 | 0.1458 | 0.7973 | 0.6822 | 0.7973 | 0.7974 | 0.8139 | [0.8318891557995882, 0.7666015625, 0.7682954289574421, 0.9333333333333333] | 0.9897 | 0.9898 | 23312 | 23553 | 0.6955 | 19.1441 | 4451 | 23250.0 |
| 0.3827 | 1.6676 | 6265 | 0.1320 | 0.8109 | 0.6993 | 0.8107 | 0.8111 | 0.8294 | [0.8467426359922597, 0.7889852885703508, 0.788783355947535, 0.9453376205787781] | 0.9873 | 0.9873 | 23255 | 23553 | 0.7111 | 17.6258 | 4098 | 23250.0 |
| 0.1238 | 2.0011 | 7518 | 0.1218 | 0.8205 | 0.7139 | 0.8205 | 0.8206 | 0.8462 | [0.8559577028885832, 0.8045084439083233, 0.8144353369763205, 0.9607843137254902] | 0.9877 | 0.9877 | 23264 | 23553 | 0.7231 | 16.5720 | 3853 | 23250.0 |
| 0.1238 | 2.3346 | 8771 | 0.1223 | 0.8246 | 0.7219 | 0.8247 | 0.8249 | 0.8506 | [0.8575583882282488, 0.8074450590521752, 0.8080267558528428, 0.9639344262295082] | 0.9925 | 0.9926 | 23378 | 23553 | 0.7298 | 16.1978 | 3766 | 23250.0 |
| 0.1238 | 2.6681 | 10024 | 0.1177 | 0.8319 | 0.7326 | 0.8320 | 0.8321 | 0.8580 | [0.8628791114908159, 0.8155853840417598, 0.8160765976397238, 0.9671052631578947] | 0.9939 | 0.9939 | 23410 | 23553 | 0.7379 | 15.6602 | 3641 | 23250.0 |
| 0.0686 | 3.0016 | 11277 | 0.1122 | 0.8388 | 0.7400 | 0.8391 | 0.8391 | 0.8623 | [0.8686514886164624, 0.8236522257848036, 0.8239625167336011, 0.9607843137254902] | 0.9940 | 0.9940 | 23411 | 23553 | 0.7462 | 15.0237 | 3493 | 23250.0 |
| 0.0686 | 3.3351 | 12530 | 0.1184 | 0.8398 | 0.7450 | 0.8397 | 0.8398 | 0.8682 | [0.8676339190741608, 0.8243353328889876, 0.8229854689564069, 0.9735099337748344] | 0.9979 | 0.9979 | 23503 | 23553 | 0.7488 | 14.9677 | 3480 | 23250.0 |
| 0.0686 | 3.6686 | 13783 | 0.1148 | 0.8440 | 0.7484 | 0.8441 | 0.8442 | 0.8716 | [0.8706277359853798, 0.8271121294995935, 0.826640333552776, 0.9735099337748344] | 0.9990 | 0.9990 | 23529 | 23553 | 0.7533 | 14.5806 | 3390 | 23250.0 |
| 0.0383 | 4.0021 | 15036 | 0.1134 | 0.8498 | 0.7547 | 0.8498 | 0.8500 | 0.8750 | [0.8757069354084279, 0.8344307168750462, 0.8344676180021954, 0.9671052631578947] | 0.9985 | 0.9985 | 23517 | 23553 | 0.7592 | 14.0516 | 3267 | 23250.0 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|