File size: 1,760 Bytes
aa59006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ef47c0
aa59006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ef47c0
aa59006
 
 
 
 
 
7ef47c0
 
 
 
 
 
aa59006
 
 
 
 
 
 
7ef47c0
aa59006
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: TinyPixel/Llama-2-7B-bf16-sharded
model-index:
- name: llama2-7b-ft-adapters
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# llama2-7b-ft-adapters

This model is a fine-tuned version of [TinyPixel/Llama-2-7B-bf16-sharded](https://huggingface.co/TinyPixel/Llama-2-7B-bf16-sharded) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4400

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 6
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.2165        | 0.95  | 15   | 0.6419          |
| 0.505         | 1.97  | 31   | 0.4841          |
| 0.4416        | 2.98  | 47   | 0.4493          |
| 0.3976        | 4.0   | 63   | 0.4346          |
| 0.375         | 4.95  | 78   | 0.4301          |
| 0.2842        | 5.71  | 90   | 0.4400          |


### Framework versions

- PEFT 0.7.2.dev0
- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0