Hsueh1001 commited on
Commit
a17dc72
1 Parent(s): 5a975f5

Upload detect.py

Browse files
Files changed (1) hide show
  1. detect.py +196 -0
detect.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import time
3
+ from pathlib import Path
4
+
5
+ import cv2
6
+ import torch
7
+ import torch.backends.cudnn as cudnn
8
+ from numpy import random
9
+
10
+ from models.experimental import attempt_load
11
+ from utils.datasets import LoadStreams, LoadImages
12
+ from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
13
+ scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
14
+ from utils.plots import plot_one_box
15
+ from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
16
+
17
+
18
+ def detect(save_img=False):
19
+ source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
20
+ save_img = not opt.nosave and not source.endswith('.txt') # save inference images
21
+ webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
22
+ ('rtsp://', 'rtmp://', 'http://', 'https://'))
23
+
24
+ # Directories
25
+ save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
26
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
27
+
28
+ # Initialize
29
+ set_logging()
30
+ device = select_device(opt.device)
31
+ half = device.type != 'cpu' # half precision only supported on CUDA
32
+
33
+ # Load model
34
+ model = attempt_load(weights, map_location=device) # load FP32 model
35
+ stride = int(model.stride.max()) # model stride
36
+ imgsz = check_img_size(imgsz, s=stride) # check img_size
37
+
38
+ if trace:
39
+ model = TracedModel(model, device, opt.img_size)
40
+
41
+ if half:
42
+ model.half() # to FP16
43
+
44
+ # Second-stage classifier
45
+ classify = False
46
+ if classify:
47
+ modelc = load_classifier(name='resnet101', n=2) # initialize
48
+ modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
49
+
50
+ # Set Dataloader
51
+ vid_path, vid_writer = None, None
52
+ if webcam:
53
+ view_img = check_imshow()
54
+ cudnn.benchmark = True # set True to speed up constant image size inference
55
+ dataset = LoadStreams(source, img_size=imgsz, stride=stride)
56
+ else:
57
+ dataset = LoadImages(source, img_size=imgsz, stride=stride)
58
+
59
+ # Get names and colors
60
+ names = model.module.names if hasattr(model, 'module') else model.names
61
+ colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
62
+
63
+ # Run inference
64
+ if device.type != 'cpu':
65
+ model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
66
+ old_img_w = old_img_h = imgsz
67
+ old_img_b = 1
68
+
69
+ t0 = time.time()
70
+ for path, img, im0s, vid_cap in dataset:
71
+ img = torch.from_numpy(img).to(device)
72
+ img = img.half() if half else img.float() # uint8 to fp16/32
73
+ img /= 255.0 # 0 - 255 to 0.0 - 1.0
74
+ if img.ndimension() == 3:
75
+ img = img.unsqueeze(0)
76
+
77
+ # Warmup
78
+ if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
79
+ old_img_b = img.shape[0]
80
+ old_img_h = img.shape[2]
81
+ old_img_w = img.shape[3]
82
+ for i in range(3):
83
+ model(img, augment=opt.augment)[0]
84
+
85
+ # Inference
86
+ t1 = time_synchronized()
87
+ with torch.no_grad(): # Calculating gradients would cause a GPU memory leak
88
+ pred = model(img, augment=opt.augment)[0]
89
+ t2 = time_synchronized()
90
+
91
+ # Apply NMS
92
+ pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
93
+ t3 = time_synchronized()
94
+
95
+ # Apply Classifier
96
+ if classify:
97
+ pred = apply_classifier(pred, modelc, img, im0s)
98
+
99
+ # Process detections
100
+ for i, det in enumerate(pred): # detections per image
101
+ if webcam: # batch_size >= 1
102
+ p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
103
+ else:
104
+ p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
105
+
106
+ p = Path(p) # to Path
107
+ save_path = str(save_dir / p.name) # img.jpg
108
+ txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
109
+ gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
110
+ if len(det):
111
+ # Rescale boxes from img_size to im0 size
112
+ det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
113
+
114
+ # Print results
115
+ for c in det[:, -1].unique():
116
+ n = (det[:, -1] == c).sum() # detections per class
117
+ s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
118
+
119
+ # Write results
120
+ for *xyxy, conf, cls in reversed(det):
121
+ if save_txt: # Write to file
122
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
123
+ line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
124
+ with open(txt_path + '.txt', 'a') as f:
125
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
126
+
127
+ if save_img or view_img: # Add bbox to image
128
+ label = f'{names[int(cls)]} {conf:.2f}'
129
+ plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=5)
130
+
131
+ # Print time (inference + NMS)
132
+ print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')
133
+
134
+ # Stream results
135
+ if view_img:
136
+ cv2.imshow(str(p), im0)
137
+ cv2.waitKey(1) # 1 millisecond
138
+
139
+ # Save results (image with detections)
140
+ if save_img:
141
+ if dataset.mode == 'image':
142
+ cv2.imwrite(save_path, im0)
143
+ print(f" The image with the result is saved in: {save_path}")
144
+ else: # 'video' or 'stream'
145
+ if vid_path != save_path: # new video
146
+ vid_path = save_path
147
+ if isinstance(vid_writer, cv2.VideoWriter):
148
+ vid_writer.release() # release previous video writer
149
+ if vid_cap: # video
150
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
151
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
152
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
153
+ else: # stream
154
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
155
+ save_path += '.mp4'
156
+ vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
157
+ vid_writer.write(im0)
158
+
159
+ if save_txt or save_img:
160
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
161
+ #print(f"Results saved to {save_dir}{s}")
162
+
163
+ print(f'Done. ({time.time() - t0:.3f}s)')
164
+
165
+
166
+ if __name__ == '__main__':
167
+ parser = argparse.ArgumentParser()
168
+ parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
169
+ parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
170
+ parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
171
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
172
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
173
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
174
+ parser.add_argument('--view-img', action='store_true', help='display results')
175
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
176
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
177
+ parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
178
+ parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
179
+ parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
180
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
181
+ parser.add_argument('--update', action='store_true', help='update all models')
182
+ parser.add_argument('--project', default='runs/detect', help='save results to project/name')
183
+ parser.add_argument('--name', default='exp', help='save results to project/name')
184
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
185
+ parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
186
+ opt = parser.parse_args()
187
+ print(opt)
188
+ #check_requirements(exclude=('pycocotools', 'thop'))
189
+
190
+ with torch.no_grad():
191
+ if opt.update: # update all models (to fix SourceChangeWarning)
192
+ for opt.weights in ['yolov7.pt']:
193
+ detect()
194
+ strip_optimizer(opt.weights)
195
+ else:
196
+ detect()