|
import torch |
|
import argparse |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
from datasets import load_dataset |
|
|
|
|
|
def main(args): |
|
tokenizer = AutoTokenizer.from_pretrained(args.model_name) |
|
model = AutoModelForSequenceClassification.from_pretrained(args.model_name, torch_dtype=torch.bfloat16) |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
|
|
dataset = load_dataset(args.dataset_name, args.dataset_config, |
|
split="train", cache_dir="/scratch/cosmo/cache/", num_proc=12) |
|
dataset = dataset.filter(lambda x, i: i % args.num_shards == args.shard, with_indices=True, num_proc=12) |
|
|
|
def compute_scores(batch): |
|
inputs = tokenizer(batch[args.text_column], return_tensors="pt", padding="longest", truncation=True).to(device) |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits.squeeze(-1).float().cpu().numpy() |
|
|
|
batch["score"] = logits.tolist() |
|
batch["int_score"] = [int(round(max(0, min(score, 5)))) for score in logits] |
|
return batch |
|
|
|
dataset = dataset.map(compute_scores, batched=True, batch_size=512) |
|
|
|
while True: |
|
try: |
|
config_name = f"{args.output_dataset_config}_{args.shard}" |
|
dataset.push_to_hub(args.output_dataset_name, config_name=config_name, private=True, max_shard_size="4096MB") |
|
break |
|
except Exception as e: |
|
print(e) |
|
continue |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument("--model_name", type=str, default="HuggingFaceFW/fineweb-edu-classifier") |
|
parser.add_argument("--dataset_name", type=str, default="HuggingFaceFW/fineweb") |
|
parser.add_argument("--dataset_config", type=str, default="default") |
|
parser.add_argument("--output_dataset_name", type=str, default="HuggingFaceFW/fineweb-edu") |
|
parser.add_argument("--output_dataset_config", type=str, default="default") |
|
parser.add_argument("--text_column", type=str, default="text") |
|
parser.add_argument("--shard", type=int, required=True) |
|
parser.add_argument("--num_shards", type=int, required=True) |
|
|
|
args = parser.parse_args() |
|
main(args) |
|
|