|
from transformers import ( |
|
AutoTokenizer, |
|
DataCollatorWithPadding, |
|
TrainingArguments, |
|
Trainer, |
|
AutoModelForSequenceClassification, |
|
) |
|
from datasets import load_dataset, ClassLabel |
|
import numpy as np |
|
import evaluate |
|
import argparse |
|
import os |
|
from sklearn.metrics import classification_report, confusion_matrix |
|
|
|
|
|
def compute_metrics(eval_pred): |
|
precision_metric = evaluate.load("precision") |
|
recall_metric = evaluate.load("recall") |
|
f1_metric = evaluate.load("f1") |
|
accuracy_metric = evaluate.load("accuracy") |
|
|
|
logits, labels = eval_pred |
|
preds = np.round(logits.squeeze()).clip(0, 5).astype(int) |
|
labels = np.round(labels.squeeze()).astype(int) |
|
precision = precision_metric.compute( |
|
predictions=preds, references=labels, average="macro" |
|
)["precision"] |
|
recall = recall_metric.compute( |
|
predictions=preds, references=labels, average="macro" |
|
)["recall"] |
|
f1 = f1_metric.compute(predictions=preds, references=labels, average="macro")["f1"] |
|
accuracy = accuracy_metric.compute(predictions=preds, references=labels)["accuracy"] |
|
|
|
report = classification_report(labels, preds) |
|
cm = confusion_matrix(labels, preds) |
|
print("Validation Report:\n" + report) |
|
print("Confusion Matrix:\n" + str(cm)) |
|
|
|
return { |
|
"precision": precision, |
|
"recall": recall, |
|
"f1_macro": f1, |
|
"accuracy": accuracy, |
|
} |
|
|
|
|
|
def main(args): |
|
dataset = load_dataset( |
|
args.dataset_name, split="train", cache_dir="/scratch/cosmo/cache/", num_proc=8 |
|
) |
|
dataset = dataset.map( |
|
lambda x: {args.target_column: np.clip(int(x[args.target_column]), 0, 5)}, num_proc=8 |
|
) |
|
|
|
dataset = dataset.cast_column( |
|
args.target_column, ClassLabel(names=[str(i) for i in range(6)]) |
|
) |
|
dataset = dataset.train_test_split( |
|
train_size=0.9, seed=42, stratify_by_column=args.target_column |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.base_model_name) |
|
|
|
def preprocess(examples): |
|
batch = tokenizer(examples["text"], truncation=True) |
|
batch["labels"] = np.float32(examples[args.target_column]) |
|
return batch |
|
|
|
dataset = dataset.map(preprocess, batched=True) |
|
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) |
|
model = AutoModelForSequenceClassification.from_pretrained(args.base_model_name, num_labels=1, classifier_dropout=0.0, hidden_dropout_prob=0.0) |
|
|
|
for param in model.bert.embeddings.parameters(): |
|
param.requires_grad = False |
|
for param in model.bert.encoder.parameters(): |
|
param.requires_grad = False |
|
|
|
training_args = TrainingArguments( |
|
output_dir=args.checkpoint_dir, |
|
evaluation_strategy="steps", |
|
save_strategy="steps", |
|
eval_steps=1000, |
|
save_steps=1000, |
|
logging_steps=100, |
|
learning_rate=3e-4, |
|
num_train_epochs=20, |
|
seed=0, |
|
per_device_train_batch_size=256, |
|
per_device_eval_batch_size=128, |
|
load_best_model_at_end=True, |
|
metric_for_best_model="f1_macro", |
|
greater_is_better=True, |
|
bf16=True, |
|
) |
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=dataset["train"], |
|
eval_dataset=dataset["test"], |
|
tokenizer=tokenizer, |
|
data_collator=data_collator, |
|
compute_metrics=compute_metrics, |
|
) |
|
|
|
trainer.train() |
|
trainer.save_model(os.path.join(args.checkpoint_dir, "final")) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--base_model_name", type=str, default="Snowflake/snowflake-arctic-embed-m") |
|
parser.add_argument("--dataset_name", type=str, default="HuggingFaceFW/fineweb-edu-llama3-annotations") |
|
parser.add_argument("--target_column", type=str, default="score") |
|
parser.add_argument("--checkpoint_dir", type=str, default="/fsx/anton/cosmopedia/edu_score/bert_snowflake_regression") |
|
args = parser.parse_args() |
|
|
|
main(args) |
|
|