release
Browse files- optimizer.pt +0 -3
- rng_state.pth +0 -3
- scheduler.pt +0 -3
- src/README.md +20 -0
- src/run_edu_bert.py +52 -0
- src/run_edu_bert.slurm +29 -0
- src/train_edu_bert.py +118 -0
- src/train_edu_bert.slurm +22 -0
- trainer_state.json +0 -2235
optimizer.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:06bcda9875d78e84a67823f2816a0b70c9f4ef59eaaf3c751f57fc4c23e1bf7a
|
3 |
-
size 4735250
|
|
|
|
|
|
|
|
rng_state.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d528da29fcd37f6a0dc448517a000f9d27057f065cda48d9c2f61cad3ea082b2
|
3 |
-
size 14180
|
|
|
|
|
|
|
|
scheduler.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:807cda89e32cea0b443893509b253215295b99009aaa01c922bdd6035bfc2f66
|
3 |
-
size 1064
|
|
|
|
|
|
|
|
src/README.md
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Educational value classifier
|
2 |
+
|
3 |
+
### 1. Finetune a model for educational value regression
|
4 |
+
|
5 |
+
* edit `train_edu_bert.slurm`
|
6 |
+
```bash
|
7 |
+
--base_model_name="Snowflake/snowflake-arctic-embed-m" \ # BERT-like base model
|
8 |
+
--dataset_name="HuggingFaceTB/LLM_juries_fineweb_430k_annotations" \ # Llama3-annotated eduational value dataset
|
9 |
+
--target_column="score"
|
10 |
+
```
|
11 |
+
* run the training script on a SLURM cluster:
|
12 |
+
```bash
|
13 |
+
sbatch train_edu_bert.slurm
|
14 |
+
```
|
15 |
+
|
16 |
+
### 2. Annotate a dataset with the educational scores predicted by the model
|
17 |
+
|
18 |
+
```bash
|
19 |
+
sbatch run_edu_bert.slurm
|
20 |
+
```
|
src/run_edu_bert.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import argparse
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
from datasets import load_dataset
|
5 |
+
|
6 |
+
|
7 |
+
def main(args):
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
|
9 |
+
model = AutoModelForSequenceClassification.from_pretrained(args.model_name, torch_dtype=torch.bfloat16)
|
10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
model.to(device)
|
12 |
+
|
13 |
+
dataset = load_dataset(args.dataset_name, args.dataset_config,
|
14 |
+
split="train", cache_dir="/scratch/cosmo/cache/", num_proc=12)
|
15 |
+
dataset = dataset.filter(lambda x, i: i % args.num_shards == args.shard, with_indices=True, num_proc=12)
|
16 |
+
|
17 |
+
def compute_scores(batch):
|
18 |
+
inputs = tokenizer(batch[args.text_column], return_tensors="pt", padding="longest", truncation=True).to(device)
|
19 |
+
with torch.no_grad():
|
20 |
+
outputs = model(**inputs)
|
21 |
+
logits = outputs.logits.squeeze(-1).float().cpu().numpy()
|
22 |
+
|
23 |
+
batch["score"] = logits.tolist()
|
24 |
+
batch["int_score"] = [int(round(max(0, min(score, 5)))) for score in logits]
|
25 |
+
return batch
|
26 |
+
|
27 |
+
dataset = dataset.map(compute_scores, batched=True, batch_size=512)
|
28 |
+
|
29 |
+
while True:
|
30 |
+
try:
|
31 |
+
config_name = f"{args.output_dataset_config}_{args.shard}"
|
32 |
+
dataset.push_to_hub(args.output_dataset_name, config_name=config_name, private=True, max_shard_size="4096MB")
|
33 |
+
break
|
34 |
+
except Exception as e:
|
35 |
+
print(e)
|
36 |
+
continue
|
37 |
+
|
38 |
+
|
39 |
+
if __name__ == "__main__":
|
40 |
+
parser = argparse.ArgumentParser()
|
41 |
+
|
42 |
+
parser.add_argument("--model_name", type=str, default="HHuggingFaceFW/fineweb-edu-classifier")
|
43 |
+
parser.add_argument("--dataset_name", type=str, default="HuggingFaceFW/fineweb")
|
44 |
+
parser.add_argument("--dataset_config", type=str, default="default")
|
45 |
+
parser.add_argument("--output_dataset_name", type=str, default="HuggingFaceFW/fineweb-edu")
|
46 |
+
parser.add_argument("--output_dataset_config", type=str, default="default")
|
47 |
+
parser.add_argument("--text_column", type=str, default="text")
|
48 |
+
parser.add_argument("--shard", type=int, required=True)
|
49 |
+
parser.add_argument("--num_shards", type=int, required=True)
|
50 |
+
|
51 |
+
args = parser.parse_args()
|
52 |
+
main(args)
|
src/run_edu_bert.slurm
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=run_edu_bert
|
3 |
+
#SBATCH --partition hopper-prod
|
4 |
+
#SBATCH --qos=normal
|
5 |
+
#SBATCH --requeue
|
6 |
+
#SBATCH --nodes=1
|
7 |
+
#SBATCH --ntasks-per-node=1
|
8 |
+
#SBATCH --cpus-per-task=12
|
9 |
+
#SBATCH --mem-per-cpu=20G
|
10 |
+
#SBATCH --gpus=1
|
11 |
+
#SBATCH -o %x_%j.out
|
12 |
+
#SBATCH -e %x_%j.err
|
13 |
+
#SBATCH --time=7-00:00:00
|
14 |
+
#SBATCH --array=0,1,2,3,4,6,7,8,26,29,31%32
|
15 |
+
|
16 |
+
set -x -e
|
17 |
+
source ~/.bashrc
|
18 |
+
source "/admin/home/anton/miniforge3/etc/profile.d/conda.sh"
|
19 |
+
source activate lighteval
|
20 |
+
|
21 |
+
python run_edu_bert.py \
|
22 |
+
--model_name="HuggingFaceFW/fineweb-edu-classifier" \
|
23 |
+
--dataset_name="HuggingFaceFW/fineweb" \
|
24 |
+
--dataset_config="CC-MAIN-2019-04" \
|
25 |
+
--output_dataset_name="HuggingFaceFW/fineweb-edu-annotations" \
|
26 |
+
--output_dataset_config="CC-MAIN-2019-04" \
|
27 |
+
--text_column="text" \
|
28 |
+
--shard ${SLURM_ARRAY_TASK_ID} \
|
29 |
+
--num_shards 32
|
src/train_edu_bert.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import (
|
2 |
+
AutoTokenizer,
|
3 |
+
DataCollatorWithPadding,
|
4 |
+
TrainingArguments,
|
5 |
+
Trainer,
|
6 |
+
AutoModelForSequenceClassification,
|
7 |
+
)
|
8 |
+
from datasets import load_dataset, ClassLabel
|
9 |
+
import numpy as np
|
10 |
+
import evaluate
|
11 |
+
import argparse
|
12 |
+
import os
|
13 |
+
from sklearn.metrics import classification_report, confusion_matrix
|
14 |
+
|
15 |
+
|
16 |
+
def compute_metrics(eval_pred):
|
17 |
+
precision_metric = evaluate.load("precision")
|
18 |
+
recall_metric = evaluate.load("recall")
|
19 |
+
f1_metric = evaluate.load("f1")
|
20 |
+
accuracy_metric = evaluate.load("accuracy")
|
21 |
+
|
22 |
+
logits, labels = eval_pred
|
23 |
+
preds = np.round(logits.squeeze()).clip(0, 5).astype(int)
|
24 |
+
labels = np.round(labels.squeeze()).astype(int)
|
25 |
+
precision = precision_metric.compute(
|
26 |
+
predictions=preds, references=labels, average="macro"
|
27 |
+
)["precision"]
|
28 |
+
recall = recall_metric.compute(
|
29 |
+
predictions=preds, references=labels, average="macro"
|
30 |
+
)["recall"]
|
31 |
+
f1 = f1_metric.compute(predictions=preds, references=labels, average="macro")["f1"]
|
32 |
+
accuracy = accuracy_metric.compute(predictions=preds, references=labels)["accuracy"]
|
33 |
+
|
34 |
+
report = classification_report(labels, preds)
|
35 |
+
cm = confusion_matrix(labels, preds)
|
36 |
+
print("Validation Report:\n" + report)
|
37 |
+
print("Confusion Matrix:\n" + str(cm))
|
38 |
+
|
39 |
+
return {
|
40 |
+
"precision": precision,
|
41 |
+
"recall": recall,
|
42 |
+
"f1_macro": f1,
|
43 |
+
"accuracy": accuracy,
|
44 |
+
}
|
45 |
+
|
46 |
+
|
47 |
+
def main(args):
|
48 |
+
dataset = load_dataset(
|
49 |
+
args.dataset_name, split="train", cache_dir="/scratch/cosmo/cache/", num_proc=8
|
50 |
+
)
|
51 |
+
dataset = dataset.map(
|
52 |
+
lambda x: {args.target_column: np.clip(int(x[args.target_column]), 0, 5)}, num_proc=8
|
53 |
+
)
|
54 |
+
|
55 |
+
dataset = dataset.cast_column(
|
56 |
+
args.target_column, ClassLabel(names=[str(i) for i in range(6)])
|
57 |
+
)
|
58 |
+
dataset = dataset.train_test_split(
|
59 |
+
train_size=0.9, seed=42, stratify_by_column=args.target_column
|
60 |
+
)
|
61 |
+
|
62 |
+
tokenizer = AutoTokenizer.from_pretrained(args.base_model_name)
|
63 |
+
|
64 |
+
def preprocess(examples):
|
65 |
+
batch = tokenizer(examples["text"], truncation=True)
|
66 |
+
batch["labels"] = np.float32(examples[args.target_column])
|
67 |
+
return batch
|
68 |
+
|
69 |
+
dataset = dataset.map(preprocess, batched=True)
|
70 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
71 |
+
model = AutoModelForSequenceClassification.from_pretrained(args.base_model_name, num_labels=1, classifier_dropout=0.0, hidden_dropout_prob=0.0)
|
72 |
+
|
73 |
+
for param in model.bert.embeddings.parameters():
|
74 |
+
param.requires_grad = False
|
75 |
+
for param in model.bert.encoder.parameters():
|
76 |
+
param.requires_grad = False
|
77 |
+
|
78 |
+
training_args = TrainingArguments(
|
79 |
+
output_dir=args.checkpoint_dir,
|
80 |
+
evaluation_strategy="steps",
|
81 |
+
save_strategy="steps",
|
82 |
+
eval_steps=1000,
|
83 |
+
save_steps=1000,
|
84 |
+
logging_steps=100,
|
85 |
+
learning_rate=3e-4,
|
86 |
+
num_train_epochs=20,
|
87 |
+
seed=0,
|
88 |
+
per_device_train_batch_size=256,
|
89 |
+
per_device_eval_batch_size=128,
|
90 |
+
load_best_model_at_end=True,
|
91 |
+
metric_for_best_model="f1_macro",
|
92 |
+
greater_is_better=True,
|
93 |
+
bf16=True,
|
94 |
+
)
|
95 |
+
|
96 |
+
trainer = Trainer(
|
97 |
+
model=model,
|
98 |
+
args=training_args,
|
99 |
+
train_dataset=dataset["train"],
|
100 |
+
eval_dataset=dataset["test"],
|
101 |
+
tokenizer=tokenizer,
|
102 |
+
data_collator=data_collator,
|
103 |
+
compute_metrics=compute_metrics,
|
104 |
+
)
|
105 |
+
|
106 |
+
trainer.train()
|
107 |
+
trainer.save_model(os.path.join(args.checkpoint_dir, "final"))
|
108 |
+
|
109 |
+
|
110 |
+
if __name__ == "__main__":
|
111 |
+
parser = argparse.ArgumentParser()
|
112 |
+
parser.add_argument("--base_model_name", type=str, default="Snowflake/snowflake-arctic-embed-m")
|
113 |
+
parser.add_argument("--dataset_name", type=str, default="HuggingFaceTB/llama3_edu_500k_binary_labels")
|
114 |
+
parser.add_argument("--target_column", type=str, default="score")
|
115 |
+
parser.add_argument("--checkpoint_dir", type=str, default="/fsx/anton/cosmopedia/edu_score/bert_snowflake_regression")
|
116 |
+
args = parser.parse_args()
|
117 |
+
|
118 |
+
main(args)
|
src/train_edu_bert.slurm
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=train_edu_bert
|
3 |
+
#SBATCH --partition hopper-prod
|
4 |
+
#SBATCH --nodes=1
|
5 |
+
#SBATCH --ntasks-per-node=1
|
6 |
+
#SBATCH --cpus-per-task=16
|
7 |
+
#SBATCH --mem-per-cpu=20G
|
8 |
+
#SBATCH --gpus=1
|
9 |
+
#SBATCH -o %x_%j.out
|
10 |
+
#SBATCH -e %x_%j.err
|
11 |
+
#SBATCH --time=1-00:00:00
|
12 |
+
|
13 |
+
set -x -e
|
14 |
+
source ~/.bashrc
|
15 |
+
source "/admin/home/anton/miniforge3/etc/profile.d/conda.sh"
|
16 |
+
source activate lighteval
|
17 |
+
|
18 |
+
python train_edu_bert.py \
|
19 |
+
--base_model_name="Snowflake/snowflake-arctic-embed-m" \
|
20 |
+
--dataset_name="HuggingFaceTB/LLM_juries_fineweb_430k_annotations" \
|
21 |
+
--target_column="median_score"\
|
22 |
+
--checkpoint_dir="/fsx/anton/cosmopedia/edu_score/snowflake_regression_median_jury"
|
trainer_state.json
DELETED
@@ -1,2235 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"best_metric": 0.4959826756763837,
|
3 |
-
"best_model_checkpoint": "/fsx/anton/cosmopedia/edu_score/bert_snowflake_regression_4/checkpoint-27000",
|
4 |
-
"epoch": 16.383495145631066,
|
5 |
-
"eval_steps": 1000,
|
6 |
-
"global_step": 27000,
|
7 |
-
"is_hyper_param_search": false,
|
8 |
-
"is_local_process_zero": true,
|
9 |
-
"is_world_process_zero": true,
|
10 |
-
"log_history": [
|
11 |
-
{
|
12 |
-
"epoch": 0.06067961165048544,
|
13 |
-
"grad_norm": 0.5638211965560913,
|
14 |
-
"learning_rate": 0.0002990898058252427,
|
15 |
-
"loss": 0.4753,
|
16 |
-
"step": 100
|
17 |
-
},
|
18 |
-
{
|
19 |
-
"epoch": 0.12135922330097088,
|
20 |
-
"grad_norm": 0.47830212116241455,
|
21 |
-
"learning_rate": 0.0002981796116504854,
|
22 |
-
"loss": 0.357,
|
23 |
-
"step": 200
|
24 |
-
},
|
25 |
-
{
|
26 |
-
"epoch": 0.1820388349514563,
|
27 |
-
"grad_norm": 0.6941384077072144,
|
28 |
-
"learning_rate": 0.0002972694174757281,
|
29 |
-
"loss": 0.3542,
|
30 |
-
"step": 300
|
31 |
-
},
|
32 |
-
{
|
33 |
-
"epoch": 0.24271844660194175,
|
34 |
-
"grad_norm": 0.459163635969162,
|
35 |
-
"learning_rate": 0.00029635922330097087,
|
36 |
-
"loss": 0.3508,
|
37 |
-
"step": 400
|
38 |
-
},
|
39 |
-
{
|
40 |
-
"epoch": 0.30339805825242716,
|
41 |
-
"grad_norm": 1.1585971117019653,
|
42 |
-
"learning_rate": 0.0002954490291262136,
|
43 |
-
"loss": 0.3407,
|
44 |
-
"step": 500
|
45 |
-
},
|
46 |
-
{
|
47 |
-
"epoch": 0.3640776699029126,
|
48 |
-
"grad_norm": 0.6505594849586487,
|
49 |
-
"learning_rate": 0.0002945388349514563,
|
50 |
-
"loss": 0.3394,
|
51 |
-
"step": 600
|
52 |
-
},
|
53 |
-
{
|
54 |
-
"epoch": 0.42475728155339804,
|
55 |
-
"grad_norm": 0.9804072976112366,
|
56 |
-
"learning_rate": 0.000293628640776699,
|
57 |
-
"loss": 0.3435,
|
58 |
-
"step": 700
|
59 |
-
},
|
60 |
-
{
|
61 |
-
"epoch": 0.4854368932038835,
|
62 |
-
"grad_norm": 0.5816351175308228,
|
63 |
-
"learning_rate": 0.0002927184466019417,
|
64 |
-
"loss": 0.3323,
|
65 |
-
"step": 800
|
66 |
-
},
|
67 |
-
{
|
68 |
-
"epoch": 0.5461165048543689,
|
69 |
-
"grad_norm": 0.6582027673721313,
|
70 |
-
"learning_rate": 0.00029180825242718447,
|
71 |
-
"loss": 0.3293,
|
72 |
-
"step": 900
|
73 |
-
},
|
74 |
-
{
|
75 |
-
"epoch": 0.6067961165048543,
|
76 |
-
"grad_norm": 0.8432559370994568,
|
77 |
-
"learning_rate": 0.0002908980582524271,
|
78 |
-
"loss": 0.3337,
|
79 |
-
"step": 1000
|
80 |
-
},
|
81 |
-
{
|
82 |
-
"epoch": 0.6067961165048543,
|
83 |
-
"eval_accuracy": 0.6516312117268014,
|
84 |
-
"eval_f1_macro": 0.388617225018415,
|
85 |
-
"eval_loss": 0.32428401708602905,
|
86 |
-
"eval_precision": 0.5273989146868351,
|
87 |
-
"eval_recall": 0.3731209274235363,
|
88 |
-
"eval_runtime": 63.5791,
|
89 |
-
"eval_samples_per_second": 737.144,
|
90 |
-
"eval_steps_per_second": 5.772,
|
91 |
-
"step": 1000
|
92 |
-
},
|
93 |
-
{
|
94 |
-
"epoch": 0.6674757281553398,
|
95 |
-
"grad_norm": 0.6387248039245605,
|
96 |
-
"learning_rate": 0.0002899878640776699,
|
97 |
-
"loss": 0.3292,
|
98 |
-
"step": 1100
|
99 |
-
},
|
100 |
-
{
|
101 |
-
"epoch": 0.7281553398058253,
|
102 |
-
"grad_norm": 2.0111730098724365,
|
103 |
-
"learning_rate": 0.0002890776699029126,
|
104 |
-
"loss": 0.3283,
|
105 |
-
"step": 1200
|
106 |
-
},
|
107 |
-
{
|
108 |
-
"epoch": 0.7888349514563107,
|
109 |
-
"grad_norm": 1.0319699048995972,
|
110 |
-
"learning_rate": 0.0002881674757281553,
|
111 |
-
"loss": 0.3236,
|
112 |
-
"step": 1300
|
113 |
-
},
|
114 |
-
{
|
115 |
-
"epoch": 0.8495145631067961,
|
116 |
-
"grad_norm": 1.194286584854126,
|
117 |
-
"learning_rate": 0.000287257281553398,
|
118 |
-
"loss": 0.3178,
|
119 |
-
"step": 1400
|
120 |
-
},
|
121 |
-
{
|
122 |
-
"epoch": 0.9101941747572816,
|
123 |
-
"grad_norm": 0.4329046308994293,
|
124 |
-
"learning_rate": 0.00028634708737864073,
|
125 |
-
"loss": 0.3234,
|
126 |
-
"step": 1500
|
127 |
-
},
|
128 |
-
{
|
129 |
-
"epoch": 0.970873786407767,
|
130 |
-
"grad_norm": 0.4490291476249695,
|
131 |
-
"learning_rate": 0.0002854368932038835,
|
132 |
-
"loss": 0.3148,
|
133 |
-
"step": 1600
|
134 |
-
},
|
135 |
-
{
|
136 |
-
"epoch": 1.0315533980582525,
|
137 |
-
"grad_norm": 1.9341398477554321,
|
138 |
-
"learning_rate": 0.0002845266990291262,
|
139 |
-
"loss": 0.3157,
|
140 |
-
"step": 1700
|
141 |
-
},
|
142 |
-
{
|
143 |
-
"epoch": 1.0922330097087378,
|
144 |
-
"grad_norm": 0.6705629825592041,
|
145 |
-
"learning_rate": 0.0002836165048543689,
|
146 |
-
"loss": 0.3144,
|
147 |
-
"step": 1800
|
148 |
-
},
|
149 |
-
{
|
150 |
-
"epoch": 1.1529126213592233,
|
151 |
-
"grad_norm": 0.3708420395851135,
|
152 |
-
"learning_rate": 0.0002827063106796116,
|
153 |
-
"loss": 0.3106,
|
154 |
-
"step": 1900
|
155 |
-
},
|
156 |
-
{
|
157 |
-
"epoch": 1.2135922330097086,
|
158 |
-
"grad_norm": 0.4166070222854614,
|
159 |
-
"learning_rate": 0.00028179611650485433,
|
160 |
-
"loss": 0.3065,
|
161 |
-
"step": 2000
|
162 |
-
},
|
163 |
-
{
|
164 |
-
"epoch": 1.2135922330097086,
|
165 |
-
"eval_accuracy": 0.6756993193505025,
|
166 |
-
"eval_f1_macro": 0.4177625223934091,
|
167 |
-
"eval_loss": 0.3020932972431183,
|
168 |
-
"eval_precision": 0.5208365532058327,
|
169 |
-
"eval_recall": 0.3908095186846785,
|
170 |
-
"eval_runtime": 63.8686,
|
171 |
-
"eval_samples_per_second": 733.803,
|
172 |
-
"eval_steps_per_second": 5.746,
|
173 |
-
"step": 2000
|
174 |
-
},
|
175 |
-
{
|
176 |
-
"epoch": 1.2742718446601942,
|
177 |
-
"grad_norm": 0.949810266494751,
|
178 |
-
"learning_rate": 0.00028088592233009704,
|
179 |
-
"loss": 0.309,
|
180 |
-
"step": 2100
|
181 |
-
},
|
182 |
-
{
|
183 |
-
"epoch": 1.3349514563106797,
|
184 |
-
"grad_norm": 0.6933236718177795,
|
185 |
-
"learning_rate": 0.00027997572815533975,
|
186 |
-
"loss": 0.3039,
|
187 |
-
"step": 2200
|
188 |
-
},
|
189 |
-
{
|
190 |
-
"epoch": 1.395631067961165,
|
191 |
-
"grad_norm": 0.4874693751335144,
|
192 |
-
"learning_rate": 0.0002790655339805825,
|
193 |
-
"loss": 0.3016,
|
194 |
-
"step": 2300
|
195 |
-
},
|
196 |
-
{
|
197 |
-
"epoch": 1.4563106796116505,
|
198 |
-
"grad_norm": 0.5307803750038147,
|
199 |
-
"learning_rate": 0.0002781553398058252,
|
200 |
-
"loss": 0.295,
|
201 |
-
"step": 2400
|
202 |
-
},
|
203 |
-
{
|
204 |
-
"epoch": 1.516990291262136,
|
205 |
-
"grad_norm": 0.7260825634002686,
|
206 |
-
"learning_rate": 0.00027724514563106793,
|
207 |
-
"loss": 0.298,
|
208 |
-
"step": 2500
|
209 |
-
},
|
210 |
-
{
|
211 |
-
"epoch": 1.5776699029126213,
|
212 |
-
"grad_norm": 1.3546072244644165,
|
213 |
-
"learning_rate": 0.00027633495145631064,
|
214 |
-
"loss": 0.2937,
|
215 |
-
"step": 2600
|
216 |
-
},
|
217 |
-
{
|
218 |
-
"epoch": 1.6383495145631068,
|
219 |
-
"grad_norm": 0.7695233821868896,
|
220 |
-
"learning_rate": 0.00027542475728155335,
|
221 |
-
"loss": 0.2939,
|
222 |
-
"step": 2700
|
223 |
-
},
|
224 |
-
{
|
225 |
-
"epoch": 1.6990291262135924,
|
226 |
-
"grad_norm": 0.46857160329818726,
|
227 |
-
"learning_rate": 0.0002745145631067961,
|
228 |
-
"loss": 0.2911,
|
229 |
-
"step": 2800
|
230 |
-
},
|
231 |
-
{
|
232 |
-
"epoch": 1.7597087378640777,
|
233 |
-
"grad_norm": 0.521542489528656,
|
234 |
-
"learning_rate": 0.0002736043689320388,
|
235 |
-
"loss": 0.2936,
|
236 |
-
"step": 2900
|
237 |
-
},
|
238 |
-
{
|
239 |
-
"epoch": 1.820388349514563,
|
240 |
-
"grad_norm": 1.1797749996185303,
|
241 |
-
"learning_rate": 0.00027269417475728154,
|
242 |
-
"loss": 0.291,
|
243 |
-
"step": 3000
|
244 |
-
},
|
245 |
-
{
|
246 |
-
"epoch": 1.820388349514563,
|
247 |
-
"eval_accuracy": 0.6800947361683061,
|
248 |
-
"eval_f1_macro": 0.43005056999542096,
|
249 |
-
"eval_loss": 0.2904761731624603,
|
250 |
-
"eval_precision": 0.5283372179121356,
|
251 |
-
"eval_recall": 0.40012210038254903,
|
252 |
-
"eval_runtime": 63.5697,
|
253 |
-
"eval_samples_per_second": 737.253,
|
254 |
-
"eval_steps_per_second": 5.773,
|
255 |
-
"step": 3000
|
256 |
-
},
|
257 |
-
{
|
258 |
-
"epoch": 1.8810679611650487,
|
259 |
-
"grad_norm": 0.9966709613800049,
|
260 |
-
"learning_rate": 0.00027178398058252425,
|
261 |
-
"loss": 0.2965,
|
262 |
-
"step": 3100
|
263 |
-
},
|
264 |
-
{
|
265 |
-
"epoch": 1.941747572815534,
|
266 |
-
"grad_norm": 0.40996024012565613,
|
267 |
-
"learning_rate": 0.00027087378640776696,
|
268 |
-
"loss": 0.2941,
|
269 |
-
"step": 3200
|
270 |
-
},
|
271 |
-
{
|
272 |
-
"epoch": 2.0024271844660193,
|
273 |
-
"grad_norm": 0.5450060367584229,
|
274 |
-
"learning_rate": 0.00026996359223300967,
|
275 |
-
"loss": 0.2912,
|
276 |
-
"step": 3300
|
277 |
-
},
|
278 |
-
{
|
279 |
-
"epoch": 2.063106796116505,
|
280 |
-
"grad_norm": 0.5307539701461792,
|
281 |
-
"learning_rate": 0.0002690533980582524,
|
282 |
-
"loss": 0.2872,
|
283 |
-
"step": 3400
|
284 |
-
},
|
285 |
-
{
|
286 |
-
"epoch": 2.1237864077669903,
|
287 |
-
"grad_norm": 0.5863193273544312,
|
288 |
-
"learning_rate": 0.00026814320388349514,
|
289 |
-
"loss": 0.2929,
|
290 |
-
"step": 3500
|
291 |
-
},
|
292 |
-
{
|
293 |
-
"epoch": 2.1844660194174756,
|
294 |
-
"grad_norm": 0.584078311920166,
|
295 |
-
"learning_rate": 0.00026723300970873785,
|
296 |
-
"loss": 0.2879,
|
297 |
-
"step": 3600
|
298 |
-
},
|
299 |
-
{
|
300 |
-
"epoch": 2.2451456310679614,
|
301 |
-
"grad_norm": 0.6381602883338928,
|
302 |
-
"learning_rate": 0.00026632281553398056,
|
303 |
-
"loss": 0.2892,
|
304 |
-
"step": 3700
|
305 |
-
},
|
306 |
-
{
|
307 |
-
"epoch": 2.3058252427184467,
|
308 |
-
"grad_norm": 0.4760149121284485,
|
309 |
-
"learning_rate": 0.00026541262135922327,
|
310 |
-
"loss": 0.2863,
|
311 |
-
"step": 3800
|
312 |
-
},
|
313 |
-
{
|
314 |
-
"epoch": 2.366504854368932,
|
315 |
-
"grad_norm": 0.4088296890258789,
|
316 |
-
"learning_rate": 0.000264502427184466,
|
317 |
-
"loss": 0.2913,
|
318 |
-
"step": 3900
|
319 |
-
},
|
320 |
-
{
|
321 |
-
"epoch": 2.4271844660194173,
|
322 |
-
"grad_norm": 1.3476176261901855,
|
323 |
-
"learning_rate": 0.00026359223300970874,
|
324 |
-
"loss": 0.2845,
|
325 |
-
"step": 4000
|
326 |
-
},
|
327 |
-
{
|
328 |
-
"epoch": 2.4271844660194173,
|
329 |
-
"eval_accuracy": 0.6929182580493738,
|
330 |
-
"eval_f1_macro": 0.4442664055274559,
|
331 |
-
"eval_loss": 0.280377060174942,
|
332 |
-
"eval_precision": 0.5328225535144124,
|
333 |
-
"eval_recall": 0.41160029395774395,
|
334 |
-
"eval_runtime": 64.199,
|
335 |
-
"eval_samples_per_second": 730.027,
|
336 |
-
"eval_steps_per_second": 5.717,
|
337 |
-
"step": 4000
|
338 |
-
},
|
339 |
-
{
|
340 |
-
"epoch": 2.487864077669903,
|
341 |
-
"grad_norm": 0.6318752765655518,
|
342 |
-
"learning_rate": 0.0002626820388349514,
|
343 |
-
"loss": 0.2812,
|
344 |
-
"step": 4100
|
345 |
-
},
|
346 |
-
{
|
347 |
-
"epoch": 2.5485436893203883,
|
348 |
-
"grad_norm": 0.49435973167419434,
|
349 |
-
"learning_rate": 0.00026177184466019416,
|
350 |
-
"loss": 0.2803,
|
351 |
-
"step": 4200
|
352 |
-
},
|
353 |
-
{
|
354 |
-
"epoch": 2.6092233009708736,
|
355 |
-
"grad_norm": 0.4300900101661682,
|
356 |
-
"learning_rate": 0.00026086165048543687,
|
357 |
-
"loss": 0.2853,
|
358 |
-
"step": 4300
|
359 |
-
},
|
360 |
-
{
|
361 |
-
"epoch": 2.6699029126213594,
|
362 |
-
"grad_norm": 0.9545436501502991,
|
363 |
-
"learning_rate": 0.0002599514563106796,
|
364 |
-
"loss": 0.2813,
|
365 |
-
"step": 4400
|
366 |
-
},
|
367 |
-
{
|
368 |
-
"epoch": 2.7305825242718447,
|
369 |
-
"grad_norm": 0.5803716778755188,
|
370 |
-
"learning_rate": 0.0002590412621359223,
|
371 |
-
"loss": 0.2838,
|
372 |
-
"step": 4500
|
373 |
-
},
|
374 |
-
{
|
375 |
-
"epoch": 2.79126213592233,
|
376 |
-
"grad_norm": 1.4714713096618652,
|
377 |
-
"learning_rate": 0.000258131067961165,
|
378 |
-
"loss": 0.2814,
|
379 |
-
"step": 4600
|
380 |
-
},
|
381 |
-
{
|
382 |
-
"epoch": 2.8519417475728153,
|
383 |
-
"grad_norm": 0.6767821311950684,
|
384 |
-
"learning_rate": 0.00025722087378640777,
|
385 |
-
"loss": 0.2741,
|
386 |
-
"step": 4700
|
387 |
-
},
|
388 |
-
{
|
389 |
-
"epoch": 2.912621359223301,
|
390 |
-
"grad_norm": 0.4653462767601013,
|
391 |
-
"learning_rate": 0.0002563106796116505,
|
392 |
-
"loss": 0.2783,
|
393 |
-
"step": 4800
|
394 |
-
},
|
395 |
-
{
|
396 |
-
"epoch": 2.9733009708737863,
|
397 |
-
"grad_norm": 1.3012775182724,
|
398 |
-
"learning_rate": 0.0002554004854368932,
|
399 |
-
"loss": 0.283,
|
400 |
-
"step": 4900
|
401 |
-
},
|
402 |
-
{
|
403 |
-
"epoch": 3.033980582524272,
|
404 |
-
"grad_norm": 0.4733451306819916,
|
405 |
-
"learning_rate": 0.0002544902912621359,
|
406 |
-
"loss": 0.2767,
|
407 |
-
"step": 5000
|
408 |
-
},
|
409 |
-
{
|
410 |
-
"epoch": 3.033980582524272,
|
411 |
-
"eval_accuracy": 0.6949666076343696,
|
412 |
-
"eval_f1_macro": 0.4524166681181929,
|
413 |
-
"eval_loss": 0.2772601842880249,
|
414 |
-
"eval_precision": 0.52914110464024,
|
415 |
-
"eval_recall": 0.42261704559523156,
|
416 |
-
"eval_runtime": 63.4257,
|
417 |
-
"eval_samples_per_second": 738.927,
|
418 |
-
"eval_steps_per_second": 5.786,
|
419 |
-
"step": 5000
|
420 |
-
},
|
421 |
-
{
|
422 |
-
"epoch": 3.0946601941747574,
|
423 |
-
"grad_norm": 0.4103662371635437,
|
424 |
-
"learning_rate": 0.0002535800970873786,
|
425 |
-
"loss": 0.2796,
|
426 |
-
"step": 5100
|
427 |
-
},
|
428 |
-
{
|
429 |
-
"epoch": 3.1553398058252426,
|
430 |
-
"grad_norm": 0.4195462763309479,
|
431 |
-
"learning_rate": 0.0002526699029126213,
|
432 |
-
"loss": 0.2757,
|
433 |
-
"step": 5200
|
434 |
-
},
|
435 |
-
{
|
436 |
-
"epoch": 3.216019417475728,
|
437 |
-
"grad_norm": 1.2391552925109863,
|
438 |
-
"learning_rate": 0.0002517597087378641,
|
439 |
-
"loss": 0.2783,
|
440 |
-
"step": 5300
|
441 |
-
},
|
442 |
-
{
|
443 |
-
"epoch": 3.2766990291262137,
|
444 |
-
"grad_norm": 1.2029412984848022,
|
445 |
-
"learning_rate": 0.0002508495145631068,
|
446 |
-
"loss": 0.2772,
|
447 |
-
"step": 5400
|
448 |
-
},
|
449 |
-
{
|
450 |
-
"epoch": 3.337378640776699,
|
451 |
-
"grad_norm": 0.5050978660583496,
|
452 |
-
"learning_rate": 0.0002499393203883495,
|
453 |
-
"loss": 0.2776,
|
454 |
-
"step": 5500
|
455 |
-
},
|
456 |
-
{
|
457 |
-
"epoch": 3.3980582524271843,
|
458 |
-
"grad_norm": 1.0107412338256836,
|
459 |
-
"learning_rate": 0.0002490291262135922,
|
460 |
-
"loss": 0.2766,
|
461 |
-
"step": 5600
|
462 |
-
},
|
463 |
-
{
|
464 |
-
"epoch": 3.45873786407767,
|
465 |
-
"grad_norm": 0.4374917149543762,
|
466 |
-
"learning_rate": 0.0002481189320388349,
|
467 |
-
"loss": 0.2719,
|
468 |
-
"step": 5700
|
469 |
-
},
|
470 |
-
{
|
471 |
-
"epoch": 3.5194174757281553,
|
472 |
-
"grad_norm": 1.6768765449523926,
|
473 |
-
"learning_rate": 0.0002472087378640777,
|
474 |
-
"loss": 0.2803,
|
475 |
-
"step": 5800
|
476 |
-
},
|
477 |
-
{
|
478 |
-
"epoch": 3.5800970873786406,
|
479 |
-
"grad_norm": 0.8120823502540588,
|
480 |
-
"learning_rate": 0.0002462985436893204,
|
481 |
-
"loss": 0.2723,
|
482 |
-
"step": 5900
|
483 |
-
},
|
484 |
-
{
|
485 |
-
"epoch": 3.6407766990291264,
|
486 |
-
"grad_norm": 1.3967177867889404,
|
487 |
-
"learning_rate": 0.0002453883495145631,
|
488 |
-
"loss": 0.2796,
|
489 |
-
"step": 6000
|
490 |
-
},
|
491 |
-
{
|
492 |
-
"epoch": 3.6407766990291264,
|
493 |
-
"eval_accuracy": 0.7001301555465466,
|
494 |
-
"eval_f1_macro": 0.46180498265852127,
|
495 |
-
"eval_loss": 0.272257536649704,
|
496 |
-
"eval_precision": 0.5281578618931982,
|
497 |
-
"eval_recall": 0.4315295129889904,
|
498 |
-
"eval_runtime": 63.8213,
|
499 |
-
"eval_samples_per_second": 734.347,
|
500 |
-
"eval_steps_per_second": 5.75,
|
501 |
-
"step": 6000
|
502 |
-
},
|
503 |
-
{
|
504 |
-
"epoch": 3.7014563106796117,
|
505 |
-
"grad_norm": 0.6093985438346863,
|
506 |
-
"learning_rate": 0.0002444781553398058,
|
507 |
-
"loss": 0.2744,
|
508 |
-
"step": 6100
|
509 |
-
},
|
510 |
-
{
|
511 |
-
"epoch": 3.762135922330097,
|
512 |
-
"grad_norm": 0.7282202243804932,
|
513 |
-
"learning_rate": 0.00024356796116504852,
|
514 |
-
"loss": 0.2715,
|
515 |
-
"step": 6200
|
516 |
-
},
|
517 |
-
{
|
518 |
-
"epoch": 3.8228155339805827,
|
519 |
-
"grad_norm": 1.1341967582702637,
|
520 |
-
"learning_rate": 0.00024265776699029123,
|
521 |
-
"loss": 0.2709,
|
522 |
-
"step": 6300
|
523 |
-
},
|
524 |
-
{
|
525 |
-
"epoch": 3.883495145631068,
|
526 |
-
"grad_norm": 0.8576841354370117,
|
527 |
-
"learning_rate": 0.00024174757281553394,
|
528 |
-
"loss": 0.275,
|
529 |
-
"step": 6400
|
530 |
-
},
|
531 |
-
{
|
532 |
-
"epoch": 3.9441747572815533,
|
533 |
-
"grad_norm": 0.5656840205192566,
|
534 |
-
"learning_rate": 0.00024083737864077668,
|
535 |
-
"loss": 0.2676,
|
536 |
-
"step": 6500
|
537 |
-
},
|
538 |
-
{
|
539 |
-
"epoch": 4.004854368932039,
|
540 |
-
"grad_norm": 0.6544743180274963,
|
541 |
-
"learning_rate": 0.0002399271844660194,
|
542 |
-
"loss": 0.2734,
|
543 |
-
"step": 6600
|
544 |
-
},
|
545 |
-
{
|
546 |
-
"epoch": 4.065533980582524,
|
547 |
-
"grad_norm": 1.5159205198287964,
|
548 |
-
"learning_rate": 0.0002390169902912621,
|
549 |
-
"loss": 0.2666,
|
550 |
-
"step": 6700
|
551 |
-
},
|
552 |
-
{
|
553 |
-
"epoch": 4.12621359223301,
|
554 |
-
"grad_norm": 0.9112799763679504,
|
555 |
-
"learning_rate": 0.00023810679611650483,
|
556 |
-
"loss": 0.2646,
|
557 |
-
"step": 6800
|
558 |
-
},
|
559 |
-
{
|
560 |
-
"epoch": 4.186893203883495,
|
561 |
-
"grad_norm": 0.6971092224121094,
|
562 |
-
"learning_rate": 0.00023719660194174754,
|
563 |
-
"loss": 0.2681,
|
564 |
-
"step": 6900
|
565 |
-
},
|
566 |
-
{
|
567 |
-
"epoch": 4.247572815533981,
|
568 |
-
"grad_norm": 0.5126680731773376,
|
569 |
-
"learning_rate": 0.00023628640776699028,
|
570 |
-
"loss": 0.2669,
|
571 |
-
"step": 7000
|
572 |
-
},
|
573 |
-
{
|
574 |
-
"epoch": 4.247572815533981,
|
575 |
-
"eval_accuracy": 0.7024985597541981,
|
576 |
-
"eval_f1_macro": 0.4678440617843855,
|
577 |
-
"eval_loss": 0.26851192116737366,
|
578 |
-
"eval_precision": 0.5330566032345198,
|
579 |
-
"eval_recall": 0.43620949446199525,
|
580 |
-
"eval_runtime": 63.9009,
|
581 |
-
"eval_samples_per_second": 733.432,
|
582 |
-
"eval_steps_per_second": 5.743,
|
583 |
-
"step": 7000
|
584 |
-
},
|
585 |
-
{
|
586 |
-
"epoch": 4.308252427184466,
|
587 |
-
"grad_norm": 0.40426695346832275,
|
588 |
-
"learning_rate": 0.000235376213592233,
|
589 |
-
"loss": 0.2722,
|
590 |
-
"step": 7100
|
591 |
-
},
|
592 |
-
{
|
593 |
-
"epoch": 4.368932038834951,
|
594 |
-
"grad_norm": 0.4849171042442322,
|
595 |
-
"learning_rate": 0.0002344660194174757,
|
596 |
-
"loss": 0.273,
|
597 |
-
"step": 7200
|
598 |
-
},
|
599 |
-
{
|
600 |
-
"epoch": 4.429611650485437,
|
601 |
-
"grad_norm": 0.7887744307518005,
|
602 |
-
"learning_rate": 0.00023355582524271844,
|
603 |
-
"loss": 0.2711,
|
604 |
-
"step": 7300
|
605 |
-
},
|
606 |
-
{
|
607 |
-
"epoch": 4.490291262135923,
|
608 |
-
"grad_norm": 1.282893419265747,
|
609 |
-
"learning_rate": 0.00023264563106796115,
|
610 |
-
"loss": 0.2633,
|
611 |
-
"step": 7400
|
612 |
-
},
|
613 |
-
{
|
614 |
-
"epoch": 4.550970873786408,
|
615 |
-
"grad_norm": 0.4942808449268341,
|
616 |
-
"learning_rate": 0.00023173543689320386,
|
617 |
-
"loss": 0.2655,
|
618 |
-
"step": 7500
|
619 |
-
},
|
620 |
-
{
|
621 |
-
"epoch": 4.611650485436893,
|
622 |
-
"grad_norm": 0.4098761975765228,
|
623 |
-
"learning_rate": 0.0002308252427184466,
|
624 |
-
"loss": 0.2719,
|
625 |
-
"step": 7600
|
626 |
-
},
|
627 |
-
{
|
628 |
-
"epoch": 4.672330097087379,
|
629 |
-
"grad_norm": 1.1584999561309814,
|
630 |
-
"learning_rate": 0.0002299150485436893,
|
631 |
-
"loss": 0.2646,
|
632 |
-
"step": 7700
|
633 |
-
},
|
634 |
-
{
|
635 |
-
"epoch": 4.733009708737864,
|
636 |
-
"grad_norm": 0.5956116318702698,
|
637 |
-
"learning_rate": 0.00022900485436893204,
|
638 |
-
"loss": 0.2681,
|
639 |
-
"step": 7800
|
640 |
-
},
|
641 |
-
{
|
642 |
-
"epoch": 4.793689320388349,
|
643 |
-
"grad_norm": 0.7886734008789062,
|
644 |
-
"learning_rate": 0.00022809466019417472,
|
645 |
-
"loss": 0.2648,
|
646 |
-
"step": 7900
|
647 |
-
},
|
648 |
-
{
|
649 |
-
"epoch": 4.854368932038835,
|
650 |
-
"grad_norm": 0.7086551785469055,
|
651 |
-
"learning_rate": 0.00022718446601941746,
|
652 |
-
"loss": 0.2667,
|
653 |
-
"step": 8000
|
654 |
-
},
|
655 |
-
{
|
656 |
-
"epoch": 4.854368932038835,
|
657 |
-
"eval_accuracy": 0.7028826253013848,
|
658 |
-
"eval_f1_macro": 0.4680422447785217,
|
659 |
-
"eval_loss": 0.2663130462169647,
|
660 |
-
"eval_precision": 0.5388642351614853,
|
661 |
-
"eval_recall": 0.4370831407609595,
|
662 |
-
"eval_runtime": 63.9774,
|
663 |
-
"eval_samples_per_second": 732.556,
|
664 |
-
"eval_steps_per_second": 5.736,
|
665 |
-
"step": 8000
|
666 |
-
},
|
667 |
-
{
|
668 |
-
"epoch": 4.915048543689321,
|
669 |
-
"grad_norm": 0.6959311366081238,
|
670 |
-
"learning_rate": 0.0002262742718446602,
|
671 |
-
"loss": 0.2662,
|
672 |
-
"step": 8100
|
673 |
-
},
|
674 |
-
{
|
675 |
-
"epoch": 4.975728155339806,
|
676 |
-
"grad_norm": 1.318164587020874,
|
677 |
-
"learning_rate": 0.0002253640776699029,
|
678 |
-
"loss": 0.2679,
|
679 |
-
"step": 8200
|
680 |
-
},
|
681 |
-
{
|
682 |
-
"epoch": 5.036407766990291,
|
683 |
-
"grad_norm": 0.5080001354217529,
|
684 |
-
"learning_rate": 0.00022445388349514561,
|
685 |
-
"loss": 0.2662,
|
686 |
-
"step": 8300
|
687 |
-
},
|
688 |
-
{
|
689 |
-
"epoch": 5.097087378640777,
|
690 |
-
"grad_norm": 0.40693196654319763,
|
691 |
-
"learning_rate": 0.00022354368932038832,
|
692 |
-
"loss": 0.2641,
|
693 |
-
"step": 8400
|
694 |
-
},
|
695 |
-
{
|
696 |
-
"epoch": 5.157766990291262,
|
697 |
-
"grad_norm": 0.42492175102233887,
|
698 |
-
"learning_rate": 0.00022263349514563106,
|
699 |
-
"loss": 0.2669,
|
700 |
-
"step": 8500
|
701 |
-
},
|
702 |
-
{
|
703 |
-
"epoch": 5.218446601941747,
|
704 |
-
"grad_norm": 0.9580904841423035,
|
705 |
-
"learning_rate": 0.00022172330097087374,
|
706 |
-
"loss": 0.2613,
|
707 |
-
"step": 8600
|
708 |
-
},
|
709 |
-
{
|
710 |
-
"epoch": 5.279126213592233,
|
711 |
-
"grad_norm": 0.573049008846283,
|
712 |
-
"learning_rate": 0.00022081310679611648,
|
713 |
-
"loss": 0.26,
|
714 |
-
"step": 8700
|
715 |
-
},
|
716 |
-
{
|
717 |
-
"epoch": 5.339805825242719,
|
718 |
-
"grad_norm": 0.7355623841285706,
|
719 |
-
"learning_rate": 0.00021990291262135922,
|
720 |
-
"loss": 0.2682,
|
721 |
-
"step": 8800
|
722 |
-
},
|
723 |
-
{
|
724 |
-
"epoch": 5.400485436893204,
|
725 |
-
"grad_norm": 0.5867640972137451,
|
726 |
-
"learning_rate": 0.00021899271844660193,
|
727 |
-
"loss": 0.2677,
|
728 |
-
"step": 8900
|
729 |
-
},
|
730 |
-
{
|
731 |
-
"epoch": 5.461165048543689,
|
732 |
-
"grad_norm": 1.283672571182251,
|
733 |
-
"learning_rate": 0.00021808252427184464,
|
734 |
-
"loss": 0.2582,
|
735 |
-
"step": 9000
|
736 |
-
},
|
737 |
-
{
|
738 |
-
"epoch": 5.461165048543689,
|
739 |
-
"eval_accuracy": 0.7030319841252907,
|
740 |
-
"eval_f1_macro": 0.476191462667983,
|
741 |
-
"eval_loss": 0.2642744779586792,
|
742 |
-
"eval_precision": 0.5389130008234221,
|
743 |
-
"eval_recall": 0.4475692410266268,
|
744 |
-
"eval_runtime": 63.527,
|
745 |
-
"eval_samples_per_second": 737.749,
|
746 |
-
"eval_steps_per_second": 5.777,
|
747 |
-
"step": 9000
|
748 |
-
},
|
749 |
-
{
|
750 |
-
"epoch": 5.521844660194175,
|
751 |
-
"grad_norm": 0.4764248728752136,
|
752 |
-
"learning_rate": 0.00021717233009708735,
|
753 |
-
"loss": 0.2596,
|
754 |
-
"step": 9100
|
755 |
-
},
|
756 |
-
{
|
757 |
-
"epoch": 5.58252427184466,
|
758 |
-
"grad_norm": 0.7470163106918335,
|
759 |
-
"learning_rate": 0.00021626213592233008,
|
760 |
-
"loss": 0.2632,
|
761 |
-
"step": 9200
|
762 |
-
},
|
763 |
-
{
|
764 |
-
"epoch": 5.643203883495145,
|
765 |
-
"grad_norm": 0.7628265023231506,
|
766 |
-
"learning_rate": 0.00021535194174757282,
|
767 |
-
"loss": 0.2583,
|
768 |
-
"step": 9300
|
769 |
-
},
|
770 |
-
{
|
771 |
-
"epoch": 5.703883495145631,
|
772 |
-
"grad_norm": 0.4257694184780121,
|
773 |
-
"learning_rate": 0.0002144417475728155,
|
774 |
-
"loss": 0.2627,
|
775 |
-
"step": 9400
|
776 |
-
},
|
777 |
-
{
|
778 |
-
"epoch": 5.764563106796117,
|
779 |
-
"grad_norm": 0.5351702570915222,
|
780 |
-
"learning_rate": 0.00021353155339805824,
|
781 |
-
"loss": 0.2578,
|
782 |
-
"step": 9500
|
783 |
-
},
|
784 |
-
{
|
785 |
-
"epoch": 5.825242718446602,
|
786 |
-
"grad_norm": 1.9470020532608032,
|
787 |
-
"learning_rate": 0.00021262135922330095,
|
788 |
-
"loss": 0.2599,
|
789 |
-
"step": 9600
|
790 |
-
},
|
791 |
-
{
|
792 |
-
"epoch": 5.885922330097087,
|
793 |
-
"grad_norm": 0.41918280720710754,
|
794 |
-
"learning_rate": 0.00021171116504854369,
|
795 |
-
"loss": 0.2604,
|
796 |
-
"step": 9700
|
797 |
-
},
|
798 |
-
{
|
799 |
-
"epoch": 5.946601941747573,
|
800 |
-
"grad_norm": 0.7866085767745972,
|
801 |
-
"learning_rate": 0.00021080097087378637,
|
802 |
-
"loss": 0.2645,
|
803 |
-
"step": 9800
|
804 |
-
},
|
805 |
-
{
|
806 |
-
"epoch": 6.007281553398058,
|
807 |
-
"grad_norm": 0.773632287979126,
|
808 |
-
"learning_rate": 0.0002098907766990291,
|
809 |
-
"loss": 0.2594,
|
810 |
-
"step": 9900
|
811 |
-
},
|
812 |
-
{
|
813 |
-
"epoch": 6.067961165048544,
|
814 |
-
"grad_norm": 0.905390202999115,
|
815 |
-
"learning_rate": 0.00020898058252427184,
|
816 |
-
"loss": 0.2587,
|
817 |
-
"step": 10000
|
818 |
-
},
|
819 |
-
{
|
820 |
-
"epoch": 6.067961165048544,
|
821 |
-
"eval_accuracy": 0.7069153135468453,
|
822 |
-
"eval_f1_macro": 0.47329615730761665,
|
823 |
-
"eval_loss": 0.26157495379447937,
|
824 |
-
"eval_precision": 0.5382757148939651,
|
825 |
-
"eval_recall": 0.4417990410758896,
|
826 |
-
"eval_runtime": 64.0102,
|
827 |
-
"eval_samples_per_second": 732.181,
|
828 |
-
"eval_steps_per_second": 5.733,
|
829 |
-
"step": 10000
|
830 |
-
},
|
831 |
-
{
|
832 |
-
"epoch": 6.128640776699029,
|
833 |
-
"grad_norm": 0.7645794749259949,
|
834 |
-
"learning_rate": 0.00020807038834951455,
|
835 |
-
"loss": 0.2584,
|
836 |
-
"step": 10100
|
837 |
-
},
|
838 |
-
{
|
839 |
-
"epoch": 6.189320388349515,
|
840 |
-
"grad_norm": 0.80213862657547,
|
841 |
-
"learning_rate": 0.00020716019417475726,
|
842 |
-
"loss": 0.2576,
|
843 |
-
"step": 10200
|
844 |
-
},
|
845 |
-
{
|
846 |
-
"epoch": 6.25,
|
847 |
-
"grad_norm": 0.49435296654701233,
|
848 |
-
"learning_rate": 0.00020624999999999997,
|
849 |
-
"loss": 0.2578,
|
850 |
-
"step": 10300
|
851 |
-
},
|
852 |
-
{
|
853 |
-
"epoch": 6.310679611650485,
|
854 |
-
"grad_norm": 1.2024767398834229,
|
855 |
-
"learning_rate": 0.0002053398058252427,
|
856 |
-
"loss": 0.2628,
|
857 |
-
"step": 10400
|
858 |
-
},
|
859 |
-
{
|
860 |
-
"epoch": 6.371359223300971,
|
861 |
-
"grad_norm": 0.43948036432266235,
|
862 |
-
"learning_rate": 0.0002044296116504854,
|
863 |
-
"loss": 0.2555,
|
864 |
-
"step": 10500
|
865 |
-
},
|
866 |
-
{
|
867 |
-
"epoch": 6.432038834951456,
|
868 |
-
"grad_norm": 1.0257009267807007,
|
869 |
-
"learning_rate": 0.00020351941747572813,
|
870 |
-
"loss": 0.2582,
|
871 |
-
"step": 10600
|
872 |
-
},
|
873 |
-
{
|
874 |
-
"epoch": 6.492718446601942,
|
875 |
-
"grad_norm": 1.2218210697174072,
|
876 |
-
"learning_rate": 0.00020260922330097086,
|
877 |
-
"loss": 0.2603,
|
878 |
-
"step": 10700
|
879 |
-
},
|
880 |
-
{
|
881 |
-
"epoch": 6.553398058252427,
|
882 |
-
"grad_norm": 0.43541598320007324,
|
883 |
-
"learning_rate": 0.00020169902912621357,
|
884 |
-
"loss": 0.2529,
|
885 |
-
"step": 10800
|
886 |
-
},
|
887 |
-
{
|
888 |
-
"epoch": 6.614077669902913,
|
889 |
-
"grad_norm": 0.4533527195453644,
|
890 |
-
"learning_rate": 0.00020078883495145628,
|
891 |
-
"loss": 0.255,
|
892 |
-
"step": 10900
|
893 |
-
},
|
894 |
-
{
|
895 |
-
"epoch": 6.674757281553398,
|
896 |
-
"grad_norm": 0.714527428150177,
|
897 |
-
"learning_rate": 0.000199878640776699,
|
898 |
-
"loss": 0.2524,
|
899 |
-
"step": 11000
|
900 |
-
},
|
901 |
-
{
|
902 |
-
"epoch": 6.674757281553398,
|
903 |
-
"eval_accuracy": 0.7088356412827789,
|
904 |
-
"eval_f1_macro": 0.471743421411692,
|
905 |
-
"eval_loss": 0.2603248357772827,
|
906 |
-
"eval_precision": 0.5487634473468738,
|
907 |
-
"eval_recall": 0.43766522368406974,
|
908 |
-
"eval_runtime": 64.8962,
|
909 |
-
"eval_samples_per_second": 722.184,
|
910 |
-
"eval_steps_per_second": 5.655,
|
911 |
-
"step": 11000
|
912 |
-
},
|
913 |
-
{
|
914 |
-
"epoch": 6.735436893203883,
|
915 |
-
"grad_norm": 0.6983916163444519,
|
916 |
-
"learning_rate": 0.00019896844660194173,
|
917 |
-
"loss": 0.2585,
|
918 |
-
"step": 11100
|
919 |
-
},
|
920 |
-
{
|
921 |
-
"epoch": 6.796116504854369,
|
922 |
-
"grad_norm": 0.8627694845199585,
|
923 |
-
"learning_rate": 0.00019805825242718447,
|
924 |
-
"loss": 0.2557,
|
925 |
-
"step": 11200
|
926 |
-
},
|
927 |
-
{
|
928 |
-
"epoch": 6.856796116504855,
|
929 |
-
"grad_norm": 0.40715476870536804,
|
930 |
-
"learning_rate": 0.00019714805825242715,
|
931 |
-
"loss": 0.2588,
|
932 |
-
"step": 11300
|
933 |
-
},
|
934 |
-
{
|
935 |
-
"epoch": 6.91747572815534,
|
936 |
-
"grad_norm": 1.0038883686065674,
|
937 |
-
"learning_rate": 0.0001962378640776699,
|
938 |
-
"loss": 0.2542,
|
939 |
-
"step": 11400
|
940 |
-
},
|
941 |
-
{
|
942 |
-
"epoch": 6.978155339805825,
|
943 |
-
"grad_norm": 0.941238522529602,
|
944 |
-
"learning_rate": 0.0001953276699029126,
|
945 |
-
"loss": 0.2597,
|
946 |
-
"step": 11500
|
947 |
-
},
|
948 |
-
{
|
949 |
-
"epoch": 7.038834951456311,
|
950 |
-
"grad_norm": 0.6316859722137451,
|
951 |
-
"learning_rate": 0.00019441747572815533,
|
952 |
-
"loss": 0.2576,
|
953 |
-
"step": 11600
|
954 |
-
},
|
955 |
-
{
|
956 |
-
"epoch": 7.099514563106796,
|
957 |
-
"grad_norm": 0.5387765169143677,
|
958 |
-
"learning_rate": 0.00019350728155339804,
|
959 |
-
"loss": 0.2525,
|
960 |
-
"step": 11700
|
961 |
-
},
|
962 |
-
{
|
963 |
-
"epoch": 7.160194174757281,
|
964 |
-
"grad_norm": 0.9042656421661377,
|
965 |
-
"learning_rate": 0.00019259708737864075,
|
966 |
-
"loss": 0.2552,
|
967 |
-
"step": 11800
|
968 |
-
},
|
969 |
-
{
|
970 |
-
"epoch": 7.220873786407767,
|
971 |
-
"grad_norm": 0.6641530990600586,
|
972 |
-
"learning_rate": 0.0001916868932038835,
|
973 |
-
"loss": 0.2495,
|
974 |
-
"step": 11900
|
975 |
-
},
|
976 |
-
{
|
977 |
-
"epoch": 7.281553398058253,
|
978 |
-
"grad_norm": 1.050493836402893,
|
979 |
-
"learning_rate": 0.0001907766990291262,
|
980 |
-
"loss": 0.2538,
|
981 |
-
"step": 12000
|
982 |
-
},
|
983 |
-
{
|
984 |
-
"epoch": 7.281553398058253,
|
985 |
-
"eval_accuracy": 0.7098171421255894,
|
986 |
-
"eval_f1_macro": 0.4800779183645662,
|
987 |
-
"eval_loss": 0.25889766216278076,
|
988 |
-
"eval_precision": 0.5445483450890162,
|
989 |
-
"eval_recall": 0.44845043483484776,
|
990 |
-
"eval_runtime": 63.7915,
|
991 |
-
"eval_samples_per_second": 734.69,
|
992 |
-
"eval_steps_per_second": 5.753,
|
993 |
-
"step": 12000
|
994 |
-
},
|
995 |
-
{
|
996 |
-
"epoch": 7.342233009708738,
|
997 |
-
"grad_norm": 0.7460100054740906,
|
998 |
-
"learning_rate": 0.0001898665048543689,
|
999 |
-
"loss": 0.2576,
|
1000 |
-
"step": 12100
|
1001 |
-
},
|
1002 |
-
{
|
1003 |
-
"epoch": 7.402912621359223,
|
1004 |
-
"grad_norm": 1.8915176391601562,
|
1005 |
-
"learning_rate": 0.00018895631067961165,
|
1006 |
-
"loss": 0.2563,
|
1007 |
-
"step": 12200
|
1008 |
-
},
|
1009 |
-
{
|
1010 |
-
"epoch": 7.463592233009709,
|
1011 |
-
"grad_norm": 0.6642426252365112,
|
1012 |
-
"learning_rate": 0.00018804611650485436,
|
1013 |
-
"loss": 0.2515,
|
1014 |
-
"step": 12300
|
1015 |
-
},
|
1016 |
-
{
|
1017 |
-
"epoch": 7.524271844660194,
|
1018 |
-
"grad_norm": 0.7037068009376526,
|
1019 |
-
"learning_rate": 0.00018713592233009707,
|
1020 |
-
"loss": 0.2525,
|
1021 |
-
"step": 12400
|
1022 |
-
},
|
1023 |
-
{
|
1024 |
-
"epoch": 7.584951456310679,
|
1025 |
-
"grad_norm": 0.44775909185409546,
|
1026 |
-
"learning_rate": 0.00018622572815533978,
|
1027 |
-
"loss": 0.2557,
|
1028 |
-
"step": 12500
|
1029 |
-
},
|
1030 |
-
{
|
1031 |
-
"epoch": 7.645631067961165,
|
1032 |
-
"grad_norm": 1.2254287004470825,
|
1033 |
-
"learning_rate": 0.0001853155339805825,
|
1034 |
-
"loss": 0.252,
|
1035 |
-
"step": 12600
|
1036 |
-
},
|
1037 |
-
{
|
1038 |
-
"epoch": 7.706310679611651,
|
1039 |
-
"grad_norm": 0.7916478514671326,
|
1040 |
-
"learning_rate": 0.00018440533980582525,
|
1041 |
-
"loss": 0.2503,
|
1042 |
-
"step": 12700
|
1043 |
-
},
|
1044 |
-
{
|
1045 |
-
"epoch": 7.766990291262136,
|
1046 |
-
"grad_norm": 0.5165425539016724,
|
1047 |
-
"learning_rate": 0.00018349514563106793,
|
1048 |
-
"loss": 0.259,
|
1049 |
-
"step": 12800
|
1050 |
-
},
|
1051 |
-
{
|
1052 |
-
"epoch": 7.827669902912621,
|
1053 |
-
"grad_norm": 0.45590564608573914,
|
1054 |
-
"learning_rate": 0.00018258495145631067,
|
1055 |
-
"loss": 0.2536,
|
1056 |
-
"step": 12900
|
1057 |
-
},
|
1058 |
-
{
|
1059 |
-
"epoch": 7.888349514563107,
|
1060 |
-
"grad_norm": 0.7460587620735168,
|
1061 |
-
"learning_rate": 0.00018167475728155338,
|
1062 |
-
"loss": 0.2536,
|
1063 |
-
"step": 13000
|
1064 |
-
},
|
1065 |
-
{
|
1066 |
-
"epoch": 7.888349514563107,
|
1067 |
-
"eval_accuracy": 0.7118014807860542,
|
1068 |
-
"eval_f1_macro": 0.48153346170307537,
|
1069 |
-
"eval_loss": 0.2587451934814453,
|
1070 |
-
"eval_precision": 0.5428621211876972,
|
1071 |
-
"eval_recall": 0.44971967808318786,
|
1072 |
-
"eval_runtime": 63.3555,
|
1073 |
-
"eval_samples_per_second": 739.747,
|
1074 |
-
"eval_steps_per_second": 5.793,
|
1075 |
-
"step": 13000
|
1076 |
-
},
|
1077 |
-
{
|
1078 |
-
"epoch": 7.949029126213592,
|
1079 |
-
"grad_norm": 0.5832739472389221,
|
1080 |
-
"learning_rate": 0.00018076456310679612,
|
1081 |
-
"loss": 0.2549,
|
1082 |
-
"step": 13100
|
1083 |
-
},
|
1084 |
-
{
|
1085 |
-
"epoch": 8.009708737864077,
|
1086 |
-
"grad_norm": 0.991656482219696,
|
1087 |
-
"learning_rate": 0.0001798543689320388,
|
1088 |
-
"loss": 0.2516,
|
1089 |
-
"step": 13200
|
1090 |
-
},
|
1091 |
-
{
|
1092 |
-
"epoch": 8.070388349514563,
|
1093 |
-
"grad_norm": 0.5339873433113098,
|
1094 |
-
"learning_rate": 0.00017894417475728154,
|
1095 |
-
"loss": 0.2492,
|
1096 |
-
"step": 13300
|
1097 |
-
},
|
1098 |
-
{
|
1099 |
-
"epoch": 8.131067961165048,
|
1100 |
-
"grad_norm": 0.5186127424240112,
|
1101 |
-
"learning_rate": 0.00017803398058252427,
|
1102 |
-
"loss": 0.2521,
|
1103 |
-
"step": 13400
|
1104 |
-
},
|
1105 |
-
{
|
1106 |
-
"epoch": 8.191747572815533,
|
1107 |
-
"grad_norm": 0.7012351751327515,
|
1108 |
-
"learning_rate": 0.00017712378640776698,
|
1109 |
-
"loss": 0.247,
|
1110 |
-
"step": 13500
|
1111 |
-
},
|
1112 |
-
{
|
1113 |
-
"epoch": 8.25242718446602,
|
1114 |
-
"grad_norm": 0.5204672813415527,
|
1115 |
-
"learning_rate": 0.0001762135922330097,
|
1116 |
-
"loss": 0.2528,
|
1117 |
-
"step": 13600
|
1118 |
-
},
|
1119 |
-
{
|
1120 |
-
"epoch": 8.313106796116505,
|
1121 |
-
"grad_norm": 0.46670639514923096,
|
1122 |
-
"learning_rate": 0.0001753033980582524,
|
1123 |
-
"loss": 0.2484,
|
1124 |
-
"step": 13700
|
1125 |
-
},
|
1126 |
-
{
|
1127 |
-
"epoch": 8.37378640776699,
|
1128 |
-
"grad_norm": 0.8041334748268127,
|
1129 |
-
"learning_rate": 0.00017439320388349514,
|
1130 |
-
"loss": 0.2534,
|
1131 |
-
"step": 13800
|
1132 |
-
},
|
1133 |
-
{
|
1134 |
-
"epoch": 8.434466019417476,
|
1135 |
-
"grad_norm": 0.482832133769989,
|
1136 |
-
"learning_rate": 0.00017348300970873787,
|
1137 |
-
"loss": 0.2463,
|
1138 |
-
"step": 13900
|
1139 |
-
},
|
1140 |
-
{
|
1141 |
-
"epoch": 8.495145631067961,
|
1142 |
-
"grad_norm": 0.9541172981262207,
|
1143 |
-
"learning_rate": 0.00017257281553398056,
|
1144 |
-
"loss": 0.2527,
|
1145 |
-
"step": 14000
|
1146 |
-
},
|
1147 |
-
{
|
1148 |
-
"epoch": 8.495145631067961,
|
1149 |
-
"eval_accuracy": 0.7112040454904304,
|
1150 |
-
"eval_f1_macro": 0.4703790685018183,
|
1151 |
-
"eval_loss": 0.2594839036464691,
|
1152 |
-
"eval_precision": 0.5469933734414426,
|
1153 |
-
"eval_recall": 0.43675078934194306,
|
1154 |
-
"eval_runtime": 64.5706,
|
1155 |
-
"eval_samples_per_second": 725.825,
|
1156 |
-
"eval_steps_per_second": 5.684,
|
1157 |
-
"step": 14000
|
1158 |
-
},
|
1159 |
-
{
|
1160 |
-
"epoch": 8.555825242718447,
|
1161 |
-
"grad_norm": 0.41729798913002014,
|
1162 |
-
"learning_rate": 0.0001716626213592233,
|
1163 |
-
"loss": 0.2566,
|
1164 |
-
"step": 14100
|
1165 |
-
},
|
1166 |
-
{
|
1167 |
-
"epoch": 8.616504854368932,
|
1168 |
-
"grad_norm": 1.1643282175064087,
|
1169 |
-
"learning_rate": 0.000170752427184466,
|
1170 |
-
"loss": 0.2492,
|
1171 |
-
"step": 14200
|
1172 |
-
},
|
1173 |
-
{
|
1174 |
-
"epoch": 8.677184466019417,
|
1175 |
-
"grad_norm": 0.5015943050384521,
|
1176 |
-
"learning_rate": 0.00016984223300970874,
|
1177 |
-
"loss": 0.2484,
|
1178 |
-
"step": 14300
|
1179 |
-
},
|
1180 |
-
{
|
1181 |
-
"epoch": 8.737864077669903,
|
1182 |
-
"grad_norm": 0.6088297963142395,
|
1183 |
-
"learning_rate": 0.00016893203883495142,
|
1184 |
-
"loss": 0.2481,
|
1185 |
-
"step": 14400
|
1186 |
-
},
|
1187 |
-
{
|
1188 |
-
"epoch": 8.798543689320388,
|
1189 |
-
"grad_norm": 0.6608941555023193,
|
1190 |
-
"learning_rate": 0.00016802184466019416,
|
1191 |
-
"loss": 0.2509,
|
1192 |
-
"step": 14500
|
1193 |
-
},
|
1194 |
-
{
|
1195 |
-
"epoch": 8.859223300970873,
|
1196 |
-
"grad_norm": 0.506313145160675,
|
1197 |
-
"learning_rate": 0.0001671116504854369,
|
1198 |
-
"loss": 0.2488,
|
1199 |
-
"step": 14600
|
1200 |
-
},
|
1201 |
-
{
|
1202 |
-
"epoch": 8.919902912621358,
|
1203 |
-
"grad_norm": 0.579694390296936,
|
1204 |
-
"learning_rate": 0.00016620145631067958,
|
1205 |
-
"loss": 0.252,
|
1206 |
-
"step": 14700
|
1207 |
-
},
|
1208 |
-
{
|
1209 |
-
"epoch": 8.980582524271846,
|
1210 |
-
"grad_norm": 1.048781156539917,
|
1211 |
-
"learning_rate": 0.00016529126213592232,
|
1212 |
-
"loss": 0.2569,
|
1213 |
-
"step": 14800
|
1214 |
-
},
|
1215 |
-
{
|
1216 |
-
"epoch": 9.04126213592233,
|
1217 |
-
"grad_norm": 0.4762475788593292,
|
1218 |
-
"learning_rate": 0.00016438106796116503,
|
1219 |
-
"loss": 0.247,
|
1220 |
-
"step": 14900
|
1221 |
-
},
|
1222 |
-
{
|
1223 |
-
"epoch": 9.101941747572816,
|
1224 |
-
"grad_norm": 0.5784612894058228,
|
1225 |
-
"learning_rate": 0.00016347087378640776,
|
1226 |
-
"loss": 0.249,
|
1227 |
-
"step": 15000
|
1228 |
-
},
|
1229 |
-
{
|
1230 |
-
"epoch": 9.101941747572816,
|
1231 |
-
"eval_accuracy": 0.7119295026351163,
|
1232 |
-
"eval_f1_macro": 0.48462198319681066,
|
1233 |
-
"eval_loss": 0.2577269971370697,
|
1234 |
-
"eval_precision": 0.6220453203620933,
|
1235 |
-
"eval_recall": 0.45259946630146386,
|
1236 |
-
"eval_runtime": 63.7117,
|
1237 |
-
"eval_samples_per_second": 735.611,
|
1238 |
-
"eval_steps_per_second": 5.76,
|
1239 |
-
"step": 15000
|
1240 |
-
},
|
1241 |
-
{
|
1242 |
-
"epoch": 9.162621359223301,
|
1243 |
-
"grad_norm": 1.0214685201644897,
|
1244 |
-
"learning_rate": 0.00016256067961165045,
|
1245 |
-
"loss": 0.2449,
|
1246 |
-
"step": 15100
|
1247 |
-
},
|
1248 |
-
{
|
1249 |
-
"epoch": 9.223300970873787,
|
1250 |
-
"grad_norm": 0.5309824347496033,
|
1251 |
-
"learning_rate": 0.00016165048543689318,
|
1252 |
-
"loss": 0.2456,
|
1253 |
-
"step": 15200
|
1254 |
-
},
|
1255 |
-
{
|
1256 |
-
"epoch": 9.283980582524272,
|
1257 |
-
"grad_norm": 2.5317320823669434,
|
1258 |
-
"learning_rate": 0.00016074029126213592,
|
1259 |
-
"loss": 0.2428,
|
1260 |
-
"step": 15300
|
1261 |
-
},
|
1262 |
-
{
|
1263 |
-
"epoch": 9.344660194174757,
|
1264 |
-
"grad_norm": 0.588573157787323,
|
1265 |
-
"learning_rate": 0.00015983009708737863,
|
1266 |
-
"loss": 0.2451,
|
1267 |
-
"step": 15400
|
1268 |
-
},
|
1269 |
-
{
|
1270 |
-
"epoch": 9.405339805825243,
|
1271 |
-
"grad_norm": 0.687719464302063,
|
1272 |
-
"learning_rate": 0.00015891990291262134,
|
1273 |
-
"loss": 0.2503,
|
1274 |
-
"step": 15500
|
1275 |
-
},
|
1276 |
-
{
|
1277 |
-
"epoch": 9.466019417475728,
|
1278 |
-
"grad_norm": 1.0443726778030396,
|
1279 |
-
"learning_rate": 0.00015800970873786405,
|
1280 |
-
"loss": 0.2485,
|
1281 |
-
"step": 15600
|
1282 |
-
},
|
1283 |
-
{
|
1284 |
-
"epoch": 9.526699029126213,
|
1285 |
-
"grad_norm": 1.1230727434158325,
|
1286 |
-
"learning_rate": 0.00015709951456310679,
|
1287 |
-
"loss": 0.2479,
|
1288 |
-
"step": 15700
|
1289 |
-
},
|
1290 |
-
{
|
1291 |
-
"epoch": 9.587378640776699,
|
1292 |
-
"grad_norm": 0.6641112565994263,
|
1293 |
-
"learning_rate": 0.00015618932038834952,
|
1294 |
-
"loss": 0.2489,
|
1295 |
-
"step": 15800
|
1296 |
-
},
|
1297 |
-
{
|
1298 |
-
"epoch": 9.648058252427184,
|
1299 |
-
"grad_norm": 0.4918789863586426,
|
1300 |
-
"learning_rate": 0.0001552791262135922,
|
1301 |
-
"loss": 0.2481,
|
1302 |
-
"step": 15900
|
1303 |
-
},
|
1304 |
-
{
|
1305 |
-
"epoch": 9.70873786407767,
|
1306 |
-
"grad_norm": 0.7862838506698608,
|
1307 |
-
"learning_rate": 0.00015436893203883494,
|
1308 |
-
"loss": 0.2481,
|
1309 |
-
"step": 16000
|
1310 |
-
},
|
1311 |
-
{
|
1312 |
-
"epoch": 9.70873786407767,
|
1313 |
-
"eval_accuracy": 0.713487101798707,
|
1314 |
-
"eval_f1_macro": 0.4839261840621368,
|
1315 |
-
"eval_loss": 0.2561655640602112,
|
1316 |
-
"eval_precision": 0.6345013597016592,
|
1317 |
-
"eval_recall": 0.4492915653199398,
|
1318 |
-
"eval_runtime": 63.9745,
|
1319 |
-
"eval_samples_per_second": 732.589,
|
1320 |
-
"eval_steps_per_second": 5.737,
|
1321 |
-
"step": 16000
|
1322 |
-
},
|
1323 |
-
{
|
1324 |
-
"epoch": 9.769417475728154,
|
1325 |
-
"grad_norm": 0.8769936561584473,
|
1326 |
-
"learning_rate": 0.00015345873786407765,
|
1327 |
-
"loss": 0.2479,
|
1328 |
-
"step": 16100
|
1329 |
-
},
|
1330 |
-
{
|
1331 |
-
"epoch": 9.830097087378642,
|
1332 |
-
"grad_norm": 0.9663941860198975,
|
1333 |
-
"learning_rate": 0.0001525485436893204,
|
1334 |
-
"loss": 0.2548,
|
1335 |
-
"step": 16200
|
1336 |
-
},
|
1337 |
-
{
|
1338 |
-
"epoch": 9.890776699029127,
|
1339 |
-
"grad_norm": 0.4475904405117035,
|
1340 |
-
"learning_rate": 0.00015163834951456307,
|
1341 |
-
"loss": 0.2504,
|
1342 |
-
"step": 16300
|
1343 |
-
},
|
1344 |
-
{
|
1345 |
-
"epoch": 9.951456310679612,
|
1346 |
-
"grad_norm": 0.9180653691291809,
|
1347 |
-
"learning_rate": 0.0001507281553398058,
|
1348 |
-
"loss": 0.246,
|
1349 |
-
"step": 16400
|
1350 |
-
},
|
1351 |
-
{
|
1352 |
-
"epoch": 10.012135922330097,
|
1353 |
-
"grad_norm": 1.1535005569458008,
|
1354 |
-
"learning_rate": 0.00014981796116504852,
|
1355 |
-
"loss": 0.2463,
|
1356 |
-
"step": 16500
|
1357 |
-
},
|
1358 |
-
{
|
1359 |
-
"epoch": 10.072815533980583,
|
1360 |
-
"grad_norm": 0.5621392130851746,
|
1361 |
-
"learning_rate": 0.00014890776699029125,
|
1362 |
-
"loss": 0.2432,
|
1363 |
-
"step": 16600
|
1364 |
-
},
|
1365 |
-
{
|
1366 |
-
"epoch": 10.133495145631068,
|
1367 |
-
"grad_norm": 0.5198004245758057,
|
1368 |
-
"learning_rate": 0.00014799757281553396,
|
1369 |
-
"loss": 0.2463,
|
1370 |
-
"step": 16700
|
1371 |
-
},
|
1372 |
-
{
|
1373 |
-
"epoch": 10.194174757281553,
|
1374 |
-
"grad_norm": 0.7625685930252075,
|
1375 |
-
"learning_rate": 0.00014708737864077667,
|
1376 |
-
"loss": 0.2474,
|
1377 |
-
"step": 16800
|
1378 |
-
},
|
1379 |
-
{
|
1380 |
-
"epoch": 10.254854368932039,
|
1381 |
-
"grad_norm": 0.4673856794834137,
|
1382 |
-
"learning_rate": 0.0001461771844660194,
|
1383 |
-
"loss": 0.244,
|
1384 |
-
"step": 16900
|
1385 |
-
},
|
1386 |
-
{
|
1387 |
-
"epoch": 10.315533980582524,
|
1388 |
-
"grad_norm": 0.6320896744728088,
|
1389 |
-
"learning_rate": 0.00014526699029126212,
|
1390 |
-
"loss": 0.241,
|
1391 |
-
"step": 17000
|
1392 |
-
},
|
1393 |
-
{
|
1394 |
-
"epoch": 10.315533980582524,
|
1395 |
-
"eval_accuracy": 0.7026265816032603,
|
1396 |
-
"eval_f1_macro": 0.4873663248833824,
|
1397 |
-
"eval_loss": 0.2613597810268402,
|
1398 |
-
"eval_precision": 0.5926410330413402,
|
1399 |
-
"eval_recall": 0.46290412629796984,
|
1400 |
-
"eval_runtime": 63.8686,
|
1401 |
-
"eval_samples_per_second": 733.803,
|
1402 |
-
"eval_steps_per_second": 5.746,
|
1403 |
-
"step": 17000
|
1404 |
-
},
|
1405 |
-
{
|
1406 |
-
"epoch": 10.37621359223301,
|
1407 |
-
"grad_norm": 1.3767356872558594,
|
1408 |
-
"learning_rate": 0.00014435679611650483,
|
1409 |
-
"loss": 0.2431,
|
1410 |
-
"step": 17100
|
1411 |
-
},
|
1412 |
-
{
|
1413 |
-
"epoch": 10.436893203883495,
|
1414 |
-
"grad_norm": 0.6615713834762573,
|
1415 |
-
"learning_rate": 0.00014344660194174757,
|
1416 |
-
"loss": 0.2401,
|
1417 |
-
"step": 17200
|
1418 |
-
},
|
1419 |
-
{
|
1420 |
-
"epoch": 10.49757281553398,
|
1421 |
-
"grad_norm": 0.5104607343673706,
|
1422 |
-
"learning_rate": 0.00014253640776699028,
|
1423 |
-
"loss": 0.2467,
|
1424 |
-
"step": 17300
|
1425 |
-
},
|
1426 |
-
{
|
1427 |
-
"epoch": 10.558252427184467,
|
1428 |
-
"grad_norm": 1.2690117359161377,
|
1429 |
-
"learning_rate": 0.00014162621359223301,
|
1430 |
-
"loss": 0.2474,
|
1431 |
-
"step": 17400
|
1432 |
-
},
|
1433 |
-
{
|
1434 |
-
"epoch": 10.618932038834952,
|
1435 |
-
"grad_norm": 0.5738195180892944,
|
1436 |
-
"learning_rate": 0.00014071601941747572,
|
1437 |
-
"loss": 0.2508,
|
1438 |
-
"step": 17500
|
1439 |
-
},
|
1440 |
-
{
|
1441 |
-
"epoch": 10.679611650485437,
|
1442 |
-
"grad_norm": 0.9724490642547607,
|
1443 |
-
"learning_rate": 0.00013980582524271843,
|
1444 |
-
"loss": 0.2457,
|
1445 |
-
"step": 17600
|
1446 |
-
},
|
1447 |
-
{
|
1448 |
-
"epoch": 10.740291262135923,
|
1449 |
-
"grad_norm": 0.5149191617965698,
|
1450 |
-
"learning_rate": 0.00013889563106796114,
|
1451 |
-
"loss": 0.2453,
|
1452 |
-
"step": 17700
|
1453 |
-
},
|
1454 |
-
{
|
1455 |
-
"epoch": 10.800970873786408,
|
1456 |
-
"grad_norm": 0.4608076512813568,
|
1457 |
-
"learning_rate": 0.00013798543689320388,
|
1458 |
-
"loss": 0.2461,
|
1459 |
-
"step": 17800
|
1460 |
-
},
|
1461 |
-
{
|
1462 |
-
"epoch": 10.861650485436893,
|
1463 |
-
"grad_norm": 0.7955921292304993,
|
1464 |
-
"learning_rate": 0.0001370752427184466,
|
1465 |
-
"loss": 0.2427,
|
1466 |
-
"step": 17900
|
1467 |
-
},
|
1468 |
-
{
|
1469 |
-
"epoch": 10.922330097087379,
|
1470 |
-
"grad_norm": 0.75131756067276,
|
1471 |
-
"learning_rate": 0.00013616504854368933,
|
1472 |
-
"loss": 0.2441,
|
1473 |
-
"step": 18000
|
1474 |
-
},
|
1475 |
-
{
|
1476 |
-
"epoch": 10.922330097087379,
|
1477 |
-
"eval_accuracy": 0.712249557257772,
|
1478 |
-
"eval_f1_macro": 0.48099926256661046,
|
1479 |
-
"eval_loss": 0.2561965882778168,
|
1480 |
-
"eval_precision": 0.6261557755424023,
|
1481 |
-
"eval_recall": 0.44725199588180664,
|
1482 |
-
"eval_runtime": 63.857,
|
1483 |
-
"eval_samples_per_second": 733.937,
|
1484 |
-
"eval_steps_per_second": 5.747,
|
1485 |
-
"step": 18000
|
1486 |
-
},
|
1487 |
-
{
|
1488 |
-
"epoch": 10.983009708737864,
|
1489 |
-
"grad_norm": 0.791315495967865,
|
1490 |
-
"learning_rate": 0.00013525485436893204,
|
1491 |
-
"loss": 0.2486,
|
1492 |
-
"step": 18100
|
1493 |
-
},
|
1494 |
-
{
|
1495 |
-
"epoch": 11.04368932038835,
|
1496 |
-
"grad_norm": 0.7312906980514526,
|
1497 |
-
"learning_rate": 0.00013434466019417475,
|
1498 |
-
"loss": 0.2431,
|
1499 |
-
"step": 18200
|
1500 |
-
},
|
1501 |
-
{
|
1502 |
-
"epoch": 11.104368932038835,
|
1503 |
-
"grad_norm": 0.609377384185791,
|
1504 |
-
"learning_rate": 0.00013343446601941746,
|
1505 |
-
"loss": 0.2399,
|
1506 |
-
"step": 18300
|
1507 |
-
},
|
1508 |
-
{
|
1509 |
-
"epoch": 11.16504854368932,
|
1510 |
-
"grad_norm": 0.5242405533790588,
|
1511 |
-
"learning_rate": 0.0001325242718446602,
|
1512 |
-
"loss": 0.2424,
|
1513 |
-
"step": 18400
|
1514 |
-
},
|
1515 |
-
{
|
1516 |
-
"epoch": 11.225728155339805,
|
1517 |
-
"grad_norm": 0.6860948204994202,
|
1518 |
-
"learning_rate": 0.0001316140776699029,
|
1519 |
-
"loss": 0.2434,
|
1520 |
-
"step": 18500
|
1521 |
-
},
|
1522 |
-
{
|
1523 |
-
"epoch": 11.28640776699029,
|
1524 |
-
"grad_norm": 2.105470657348633,
|
1525 |
-
"learning_rate": 0.0001307038834951456,
|
1526 |
-
"loss": 0.2393,
|
1527 |
-
"step": 18600
|
1528 |
-
},
|
1529 |
-
{
|
1530 |
-
"epoch": 11.347087378640778,
|
1531 |
-
"grad_norm": 0.990110456943512,
|
1532 |
-
"learning_rate": 0.00012979368932038835,
|
1533 |
-
"loss": 0.2446,
|
1534 |
-
"step": 18700
|
1535 |
-
},
|
1536 |
-
{
|
1537 |
-
"epoch": 11.407766990291263,
|
1538 |
-
"grad_norm": 0.5341915488243103,
|
1539 |
-
"learning_rate": 0.00012888349514563106,
|
1540 |
-
"loss": 0.2449,
|
1541 |
-
"step": 18800
|
1542 |
-
},
|
1543 |
-
{
|
1544 |
-
"epoch": 11.468446601941748,
|
1545 |
-
"grad_norm": 1.2902977466583252,
|
1546 |
-
"learning_rate": 0.00012797330097087377,
|
1547 |
-
"loss": 0.245,
|
1548 |
-
"step": 18900
|
1549 |
-
},
|
1550 |
-
{
|
1551 |
-
"epoch": 11.529126213592233,
|
1552 |
-
"grad_norm": 0.5241170525550842,
|
1553 |
-
"learning_rate": 0.00012706310679611648,
|
1554 |
-
"loss": 0.2433,
|
1555 |
-
"step": 19000
|
1556 |
-
},
|
1557 |
-
{
|
1558 |
-
"epoch": 11.529126213592233,
|
1559 |
-
"eval_accuracy": 0.7136791345723004,
|
1560 |
-
"eval_f1_macro": 0.47974793179174946,
|
1561 |
-
"eval_loss": 0.25500378012657166,
|
1562 |
-
"eval_precision": 0.5467676042682321,
|
1563 |
-
"eval_recall": 0.44681795057266877,
|
1564 |
-
"eval_runtime": 63.4183,
|
1565 |
-
"eval_samples_per_second": 739.014,
|
1566 |
-
"eval_steps_per_second": 5.787,
|
1567 |
-
"step": 19000
|
1568 |
-
},
|
1569 |
-
{
|
1570 |
-
"epoch": 11.589805825242719,
|
1571 |
-
"grad_norm": 1.6583833694458008,
|
1572 |
-
"learning_rate": 0.00012615291262135922,
|
1573 |
-
"loss": 0.2444,
|
1574 |
-
"step": 19100
|
1575 |
-
},
|
1576 |
-
{
|
1577 |
-
"epoch": 11.650485436893204,
|
1578 |
-
"grad_norm": 0.5068759322166443,
|
1579 |
-
"learning_rate": 0.00012524271844660192,
|
1580 |
-
"loss": 0.2417,
|
1581 |
-
"step": 19200
|
1582 |
-
},
|
1583 |
-
{
|
1584 |
-
"epoch": 11.71116504854369,
|
1585 |
-
"grad_norm": 0.8810881972312927,
|
1586 |
-
"learning_rate": 0.00012433252427184466,
|
1587 |
-
"loss": 0.2443,
|
1588 |
-
"step": 19300
|
1589 |
-
},
|
1590 |
-
{
|
1591 |
-
"epoch": 11.771844660194175,
|
1592 |
-
"grad_norm": 1.347113847732544,
|
1593 |
-
"learning_rate": 0.00012342233009708737,
|
1594 |
-
"loss": 0.2408,
|
1595 |
-
"step": 19400
|
1596 |
-
},
|
1597 |
-
{
|
1598 |
-
"epoch": 11.83252427184466,
|
1599 |
-
"grad_norm": 0.5012452602386475,
|
1600 |
-
"learning_rate": 0.00012251213592233008,
|
1601 |
-
"loss": 0.2443,
|
1602 |
-
"step": 19500
|
1603 |
-
},
|
1604 |
-
{
|
1605 |
-
"epoch": 11.893203883495145,
|
1606 |
-
"grad_norm": 0.6998531222343445,
|
1607 |
-
"learning_rate": 0.0001216019417475728,
|
1608 |
-
"loss": 0.2449,
|
1609 |
-
"step": 19600
|
1610 |
-
},
|
1611 |
-
{
|
1612 |
-
"epoch": 11.95388349514563,
|
1613 |
-
"grad_norm": 0.9693962335586548,
|
1614 |
-
"learning_rate": 0.00012069174757281553,
|
1615 |
-
"loss": 0.2415,
|
1616 |
-
"step": 19700
|
1617 |
-
},
|
1618 |
-
{
|
1619 |
-
"epoch": 12.014563106796116,
|
1620 |
-
"grad_norm": 0.5657163858413696,
|
1621 |
-
"learning_rate": 0.00011978155339805824,
|
1622 |
-
"loss": 0.2416,
|
1623 |
-
"step": 19800
|
1624 |
-
},
|
1625 |
-
{
|
1626 |
-
"epoch": 12.075242718446601,
|
1627 |
-
"grad_norm": 0.527268648147583,
|
1628 |
-
"learning_rate": 0.00011887135922330096,
|
1629 |
-
"loss": 0.2377,
|
1630 |
-
"step": 19900
|
1631 |
-
},
|
1632 |
-
{
|
1633 |
-
"epoch": 12.135922330097088,
|
1634 |
-
"grad_norm": 0.4967799782752991,
|
1635 |
-
"learning_rate": 0.00011796116504854367,
|
1636 |
-
"loss": 0.2436,
|
1637 |
-
"step": 20000
|
1638 |
-
},
|
1639 |
-
{
|
1640 |
-
"epoch": 12.135922330097088,
|
1641 |
-
"eval_accuracy": 0.7124629270062091,
|
1642 |
-
"eval_f1_macro": 0.48898241670534826,
|
1643 |
-
"eval_loss": 0.2549245059490204,
|
1644 |
-
"eval_precision": 0.6280111982698415,
|
1645 |
-
"eval_recall": 0.45813565668329703,
|
1646 |
-
"eval_runtime": 63.6697,
|
1647 |
-
"eval_samples_per_second": 736.095,
|
1648 |
-
"eval_steps_per_second": 5.764,
|
1649 |
-
"step": 20000
|
1650 |
-
},
|
1651 |
-
{
|
1652 |
-
"epoch": 12.196601941747574,
|
1653 |
-
"grad_norm": 0.5225503444671631,
|
1654 |
-
"learning_rate": 0.00011705097087378641,
|
1655 |
-
"loss": 0.2405,
|
1656 |
-
"step": 20100
|
1657 |
-
},
|
1658 |
-
{
|
1659 |
-
"epoch": 12.257281553398059,
|
1660 |
-
"grad_norm": 0.7009778022766113,
|
1661 |
-
"learning_rate": 0.00011614077669902912,
|
1662 |
-
"loss": 0.2375,
|
1663 |
-
"step": 20200
|
1664 |
-
},
|
1665 |
-
{
|
1666 |
-
"epoch": 12.317961165048544,
|
1667 |
-
"grad_norm": 0.5107778310775757,
|
1668 |
-
"learning_rate": 0.00011523058252427184,
|
1669 |
-
"loss": 0.2396,
|
1670 |
-
"step": 20300
|
1671 |
-
},
|
1672 |
-
{
|
1673 |
-
"epoch": 12.37864077669903,
|
1674 |
-
"grad_norm": 0.5113606452941895,
|
1675 |
-
"learning_rate": 0.00011432038834951455,
|
1676 |
-
"loss": 0.2379,
|
1677 |
-
"step": 20400
|
1678 |
-
},
|
1679 |
-
{
|
1680 |
-
"epoch": 12.439320388349515,
|
1681 |
-
"grad_norm": 0.6248862743377686,
|
1682 |
-
"learning_rate": 0.00011341019417475727,
|
1683 |
-
"loss": 0.2453,
|
1684 |
-
"step": 20500
|
1685 |
-
},
|
1686 |
-
{
|
1687 |
-
"epoch": 12.5,
|
1688 |
-
"grad_norm": 0.5648460984230042,
|
1689 |
-
"learning_rate": 0.0001125,
|
1690 |
-
"loss": 0.2391,
|
1691 |
-
"step": 20600
|
1692 |
-
},
|
1693 |
-
{
|
1694 |
-
"epoch": 12.560679611650485,
|
1695 |
-
"grad_norm": 0.7846024632453918,
|
1696 |
-
"learning_rate": 0.0001115898058252427,
|
1697 |
-
"loss": 0.2445,
|
1698 |
-
"step": 20700
|
1699 |
-
},
|
1700 |
-
{
|
1701 |
-
"epoch": 12.62135922330097,
|
1702 |
-
"grad_norm": 0.8849174976348877,
|
1703 |
-
"learning_rate": 0.00011067961165048543,
|
1704 |
-
"loss": 0.2392,
|
1705 |
-
"step": 20800
|
1706 |
-
},
|
1707 |
-
{
|
1708 |
-
"epoch": 12.682038834951456,
|
1709 |
-
"grad_norm": 0.5515842437744141,
|
1710 |
-
"learning_rate": 0.00010976941747572814,
|
1711 |
-
"loss": 0.2429,
|
1712 |
-
"step": 20900
|
1713 |
-
},
|
1714 |
-
{
|
1715 |
-
"epoch": 12.742718446601941,
|
1716 |
-
"grad_norm": 0.9129722118377686,
|
1717 |
-
"learning_rate": 0.00010885922330097086,
|
1718 |
-
"loss": 0.2459,
|
1719 |
-
"step": 21000
|
1720 |
-
},
|
1721 |
-
{
|
1722 |
-
"epoch": 12.742718446601941,
|
1723 |
-
"eval_accuracy": 0.7137218085219877,
|
1724 |
-
"eval_f1_macro": 0.49319871257798575,
|
1725 |
-
"eval_loss": 0.25367996096611023,
|
1726 |
-
"eval_precision": 0.6236252217705004,
|
1727 |
-
"eval_recall": 0.4640439902470517,
|
1728 |
-
"eval_runtime": 63.865,
|
1729 |
-
"eval_samples_per_second": 733.844,
|
1730 |
-
"eval_steps_per_second": 5.746,
|
1731 |
-
"step": 21000
|
1732 |
-
},
|
1733 |
-
{
|
1734 |
-
"epoch": 12.803398058252426,
|
1735 |
-
"grad_norm": 0.8533498048782349,
|
1736 |
-
"learning_rate": 0.00010794902912621357,
|
1737 |
-
"loss": 0.2384,
|
1738 |
-
"step": 21100
|
1739 |
-
},
|
1740 |
-
{
|
1741 |
-
"epoch": 12.864077669902912,
|
1742 |
-
"grad_norm": 0.5744712352752686,
|
1743 |
-
"learning_rate": 0.00010703883495145631,
|
1744 |
-
"loss": 0.241,
|
1745 |
-
"step": 21200
|
1746 |
-
},
|
1747 |
-
{
|
1748 |
-
"epoch": 12.924757281553399,
|
1749 |
-
"grad_norm": 0.9214051961898804,
|
1750 |
-
"learning_rate": 0.00010612864077669902,
|
1751 |
-
"loss": 0.2437,
|
1752 |
-
"step": 21300
|
1753 |
-
},
|
1754 |
-
{
|
1755 |
-
"epoch": 12.985436893203884,
|
1756 |
-
"grad_norm": 0.561357319355011,
|
1757 |
-
"learning_rate": 0.00010521844660194174,
|
1758 |
-
"loss": 0.2394,
|
1759 |
-
"step": 21400
|
1760 |
-
},
|
1761 |
-
{
|
1762 |
-
"epoch": 13.04611650485437,
|
1763 |
-
"grad_norm": 0.746048629283905,
|
1764 |
-
"learning_rate": 0.00010430825242718445,
|
1765 |
-
"loss": 0.2367,
|
1766 |
-
"step": 21500
|
1767 |
-
},
|
1768 |
-
{
|
1769 |
-
"epoch": 13.106796116504855,
|
1770 |
-
"grad_norm": 0.5449076294898987,
|
1771 |
-
"learning_rate": 0.00010339805825242718,
|
1772 |
-
"loss": 0.2392,
|
1773 |
-
"step": 21600
|
1774 |
-
},
|
1775 |
-
{
|
1776 |
-
"epoch": 13.16747572815534,
|
1777 |
-
"grad_norm": 0.7307832837104797,
|
1778 |
-
"learning_rate": 0.00010248786407766989,
|
1779 |
-
"loss": 0.2379,
|
1780 |
-
"step": 21700
|
1781 |
-
},
|
1782 |
-
{
|
1783 |
-
"epoch": 13.228155339805825,
|
1784 |
-
"grad_norm": 0.9420238137245178,
|
1785 |
-
"learning_rate": 0.00010157766990291262,
|
1786 |
-
"loss": 0.2348,
|
1787 |
-
"step": 21800
|
1788 |
-
},
|
1789 |
-
{
|
1790 |
-
"epoch": 13.28883495145631,
|
1791 |
-
"grad_norm": 0.43917521834373474,
|
1792 |
-
"learning_rate": 0.00010066747572815533,
|
1793 |
-
"loss": 0.2375,
|
1794 |
-
"step": 21900
|
1795 |
-
},
|
1796 |
-
{
|
1797 |
-
"epoch": 13.349514563106796,
|
1798 |
-
"grad_norm": 0.5659081339836121,
|
1799 |
-
"learning_rate": 9.975728155339806e-05,
|
1800 |
-
"loss": 0.24,
|
1801 |
-
"step": 22000
|
1802 |
-
},
|
1803 |
-
{
|
1804 |
-
"epoch": 13.349514563106796,
|
1805 |
-
"eval_accuracy": 0.7130176883521454,
|
1806 |
-
"eval_f1_macro": 0.4889124257466886,
|
1807 |
-
"eval_loss": 0.254099041223526,
|
1808 |
-
"eval_precision": 0.6244022587227488,
|
1809 |
-
"eval_recall": 0.4579878521374155,
|
1810 |
-
"eval_runtime": 63.8542,
|
1811 |
-
"eval_samples_per_second": 733.968,
|
1812 |
-
"eval_steps_per_second": 5.747,
|
1813 |
-
"step": 22000
|
1814 |
-
},
|
1815 |
-
{
|
1816 |
-
"epoch": 13.410194174757281,
|
1817 |
-
"grad_norm": 0.6600030660629272,
|
1818 |
-
"learning_rate": 9.884708737864077e-05,
|
1819 |
-
"loss": 0.2355,
|
1820 |
-
"step": 22100
|
1821 |
-
},
|
1822 |
-
{
|
1823 |
-
"epoch": 13.470873786407767,
|
1824 |
-
"grad_norm": 0.49261102080345154,
|
1825 |
-
"learning_rate": 9.793689320388349e-05,
|
1826 |
-
"loss": 0.2388,
|
1827 |
-
"step": 22200
|
1828 |
-
},
|
1829 |
-
{
|
1830 |
-
"epoch": 13.531553398058252,
|
1831 |
-
"grad_norm": 0.9407384395599365,
|
1832 |
-
"learning_rate": 9.70266990291262e-05,
|
1833 |
-
"loss": 0.2384,
|
1834 |
-
"step": 22300
|
1835 |
-
},
|
1836 |
-
{
|
1837 |
-
"epoch": 13.592233009708737,
|
1838 |
-
"grad_norm": 0.9749634265899658,
|
1839 |
-
"learning_rate": 9.611650485436893e-05,
|
1840 |
-
"loss": 0.2392,
|
1841 |
-
"step": 22400
|
1842 |
-
},
|
1843 |
-
{
|
1844 |
-
"epoch": 13.652912621359224,
|
1845 |
-
"grad_norm": 0.5800509452819824,
|
1846 |
-
"learning_rate": 9.520631067961164e-05,
|
1847 |
-
"loss": 0.2373,
|
1848 |
-
"step": 22500
|
1849 |
-
},
|
1850 |
-
{
|
1851 |
-
"epoch": 13.71359223300971,
|
1852 |
-
"grad_norm": 0.7015953063964844,
|
1853 |
-
"learning_rate": 9.429611650485437e-05,
|
1854 |
-
"loss": 0.2384,
|
1855 |
-
"step": 22600
|
1856 |
-
},
|
1857 |
-
{
|
1858 |
-
"epoch": 13.774271844660195,
|
1859 |
-
"grad_norm": 0.5446757078170776,
|
1860 |
-
"learning_rate": 9.338592233009708e-05,
|
1861 |
-
"loss": 0.2399,
|
1862 |
-
"step": 22700
|
1863 |
-
},
|
1864 |
-
{
|
1865 |
-
"epoch": 13.83495145631068,
|
1866 |
-
"grad_norm": 1.1201865673065186,
|
1867 |
-
"learning_rate": 9.247572815533979e-05,
|
1868 |
-
"loss": 0.2423,
|
1869 |
-
"step": 22800
|
1870 |
-
},
|
1871 |
-
{
|
1872 |
-
"epoch": 13.895631067961165,
|
1873 |
-
"grad_norm": 0.789397656917572,
|
1874 |
-
"learning_rate": 9.156553398058251e-05,
|
1875 |
-
"loss": 0.2401,
|
1876 |
-
"step": 22900
|
1877 |
-
},
|
1878 |
-
{
|
1879 |
-
"epoch": 13.95631067961165,
|
1880 |
-
"grad_norm": 0.9811580777168274,
|
1881 |
-
"learning_rate": 9.065533980582523e-05,
|
1882 |
-
"loss": 0.2429,
|
1883 |
-
"step": 23000
|
1884 |
-
},
|
1885 |
-
{
|
1886 |
-
"epoch": 13.95631067961165,
|
1887 |
-
"eval_accuracy": 0.7146819723899546,
|
1888 |
-
"eval_f1_macro": 0.4950660124078677,
|
1889 |
-
"eval_loss": 0.2540215849876404,
|
1890 |
-
"eval_precision": 0.6269585302337652,
|
1891 |
-
"eval_recall": 0.4640707919907739,
|
1892 |
-
"eval_runtime": 63.4303,
|
1893 |
-
"eval_samples_per_second": 738.874,
|
1894 |
-
"eval_steps_per_second": 5.786,
|
1895 |
-
"step": 23000
|
1896 |
-
},
|
1897 |
-
{
|
1898 |
-
"epoch": 14.016990291262136,
|
1899 |
-
"grad_norm": 0.6500277519226074,
|
1900 |
-
"learning_rate": 8.974514563106796e-05,
|
1901 |
-
"loss": 0.2399,
|
1902 |
-
"step": 23100
|
1903 |
-
},
|
1904 |
-
{
|
1905 |
-
"epoch": 14.077669902912621,
|
1906 |
-
"grad_norm": 0.7648112177848816,
|
1907 |
-
"learning_rate": 8.883495145631067e-05,
|
1908 |
-
"loss": 0.2355,
|
1909 |
-
"step": 23200
|
1910 |
-
},
|
1911 |
-
{
|
1912 |
-
"epoch": 14.138349514563107,
|
1913 |
-
"grad_norm": 0.6670911312103271,
|
1914 |
-
"learning_rate": 8.792475728155339e-05,
|
1915 |
-
"loss": 0.2371,
|
1916 |
-
"step": 23300
|
1917 |
-
},
|
1918 |
-
{
|
1919 |
-
"epoch": 14.199029126213592,
|
1920 |
-
"grad_norm": 0.8316827416419983,
|
1921 |
-
"learning_rate": 8.70145631067961e-05,
|
1922 |
-
"loss": 0.2355,
|
1923 |
-
"step": 23400
|
1924 |
-
},
|
1925 |
-
{
|
1926 |
-
"epoch": 14.259708737864077,
|
1927 |
-
"grad_norm": 0.4973256587982178,
|
1928 |
-
"learning_rate": 8.610436893203884e-05,
|
1929 |
-
"loss": 0.24,
|
1930 |
-
"step": 23500
|
1931 |
-
},
|
1932 |
-
{
|
1933 |
-
"epoch": 14.320388349514563,
|
1934 |
-
"grad_norm": 0.6986468434333801,
|
1935 |
-
"learning_rate": 8.519417475728155e-05,
|
1936 |
-
"loss": 0.2319,
|
1937 |
-
"step": 23600
|
1938 |
-
},
|
1939 |
-
{
|
1940 |
-
"epoch": 14.381067961165048,
|
1941 |
-
"grad_norm": 0.5316904783248901,
|
1942 |
-
"learning_rate": 8.428398058252427e-05,
|
1943 |
-
"loss": 0.2334,
|
1944 |
-
"step": 23700
|
1945 |
-
},
|
1946 |
-
{
|
1947 |
-
"epoch": 14.441747572815533,
|
1948 |
-
"grad_norm": 0.5285237431526184,
|
1949 |
-
"learning_rate": 8.337378640776698e-05,
|
1950 |
-
"loss": 0.2372,
|
1951 |
-
"step": 23800
|
1952 |
-
},
|
1953 |
-
{
|
1954 |
-
"epoch": 14.50242718446602,
|
1955 |
-
"grad_norm": 0.7617068290710449,
|
1956 |
-
"learning_rate": 8.24635922330097e-05,
|
1957 |
-
"loss": 0.2434,
|
1958 |
-
"step": 23900
|
1959 |
-
},
|
1960 |
-
{
|
1961 |
-
"epoch": 14.563106796116505,
|
1962 |
-
"grad_norm": 0.4870689809322357,
|
1963 |
-
"learning_rate": 8.155339805825241e-05,
|
1964 |
-
"loss": 0.2388,
|
1965 |
-
"step": 24000
|
1966 |
-
},
|
1967 |
-
{
|
1968 |
-
"epoch": 14.563106796116505,
|
1969 |
-
"eval_accuracy": 0.7128896665030832,
|
1970 |
-
"eval_f1_macro": 0.48631927316876294,
|
1971 |
-
"eval_loss": 0.2543109357357025,
|
1972 |
-
"eval_precision": 0.6364589670810381,
|
1973 |
-
"eval_recall": 0.451184525833245,
|
1974 |
-
"eval_runtime": 63.5544,
|
1975 |
-
"eval_samples_per_second": 737.432,
|
1976 |
-
"eval_steps_per_second": 5.775,
|
1977 |
-
"step": 24000
|
1978 |
-
},
|
1979 |
-
{
|
1980 |
-
"epoch": 14.62378640776699,
|
1981 |
-
"grad_norm": 0.48867112398147583,
|
1982 |
-
"learning_rate": 8.064320388349515e-05,
|
1983 |
-
"loss": 0.2424,
|
1984 |
-
"step": 24100
|
1985 |
-
},
|
1986 |
-
{
|
1987 |
-
"epoch": 14.684466019417476,
|
1988 |
-
"grad_norm": 1.3717137575149536,
|
1989 |
-
"learning_rate": 7.973300970873786e-05,
|
1990 |
-
"loss": 0.2373,
|
1991 |
-
"step": 24200
|
1992 |
-
},
|
1993 |
-
{
|
1994 |
-
"epoch": 14.745145631067961,
|
1995 |
-
"grad_norm": 0.5244446396827698,
|
1996 |
-
"learning_rate": 7.882281553398058e-05,
|
1997 |
-
"loss": 0.2406,
|
1998 |
-
"step": 24300
|
1999 |
-
},
|
2000 |
-
{
|
2001 |
-
"epoch": 14.805825242718447,
|
2002 |
-
"grad_norm": 0.49141696095466614,
|
2003 |
-
"learning_rate": 7.791262135922329e-05,
|
2004 |
-
"loss": 0.2345,
|
2005 |
-
"step": 24400
|
2006 |
-
},
|
2007 |
-
{
|
2008 |
-
"epoch": 14.866504854368932,
|
2009 |
-
"grad_norm": 0.5758472681045532,
|
2010 |
-
"learning_rate": 7.700242718446602e-05,
|
2011 |
-
"loss": 0.2372,
|
2012 |
-
"step": 24500
|
2013 |
-
},
|
2014 |
-
{
|
2015 |
-
"epoch": 14.927184466019417,
|
2016 |
-
"grad_norm": 0.4706755578517914,
|
2017 |
-
"learning_rate": 7.609223300970873e-05,
|
2018 |
-
"loss": 0.2363,
|
2019 |
-
"step": 24600
|
2020 |
-
},
|
2021 |
-
{
|
2022 |
-
"epoch": 14.987864077669903,
|
2023 |
-
"grad_norm": 1.1661343574523926,
|
2024 |
-
"learning_rate": 7.518203883495146e-05,
|
2025 |
-
"loss": 0.2363,
|
2026 |
-
"step": 24700
|
2027 |
-
},
|
2028 |
-
{
|
2029 |
-
"epoch": 15.048543689320388,
|
2030 |
-
"grad_norm": 0.6530236005783081,
|
2031 |
-
"learning_rate": 7.427184466019417e-05,
|
2032 |
-
"loss": 0.2371,
|
2033 |
-
"step": 24800
|
2034 |
-
},
|
2035 |
-
{
|
2036 |
-
"epoch": 15.109223300970873,
|
2037 |
-
"grad_norm": 0.6235638856887817,
|
2038 |
-
"learning_rate": 7.336165048543688e-05,
|
2039 |
-
"loss": 0.2365,
|
2040 |
-
"step": 24900
|
2041 |
-
},
|
2042 |
-
{
|
2043 |
-
"epoch": 15.169902912621358,
|
2044 |
-
"grad_norm": 1.0099172592163086,
|
2045 |
-
"learning_rate": 7.24514563106796e-05,
|
2046 |
-
"loss": 0.2333,
|
2047 |
-
"step": 25000
|
2048 |
-
},
|
2049 |
-
{
|
2050 |
-
"epoch": 15.169902912621358,
|
2051 |
-
"eval_accuracy": 0.7117374698615231,
|
2052 |
-
"eval_f1_macro": 0.4930065435769275,
|
2053 |
-
"eval_loss": 0.25366273522377014,
|
2054 |
-
"eval_precision": 0.6254110142417604,
|
2055 |
-
"eval_recall": 0.4636190323809964,
|
2056 |
-
"eval_runtime": 63.6634,
|
2057 |
-
"eval_samples_per_second": 736.168,
|
2058 |
-
"eval_steps_per_second": 5.765,
|
2059 |
-
"step": 25000
|
2060 |
-
},
|
2061 |
-
{
|
2062 |
-
"epoch": 15.230582524271846,
|
2063 |
-
"grad_norm": 0.4479919672012329,
|
2064 |
-
"learning_rate": 7.154126213592233e-05,
|
2065 |
-
"loss": 0.2363,
|
2066 |
-
"step": 25100
|
2067 |
-
},
|
2068 |
-
{
|
2069 |
-
"epoch": 15.29126213592233,
|
2070 |
-
"grad_norm": 0.5574977993965149,
|
2071 |
-
"learning_rate": 7.063106796116504e-05,
|
2072 |
-
"loss": 0.2323,
|
2073 |
-
"step": 25200
|
2074 |
-
},
|
2075 |
-
{
|
2076 |
-
"epoch": 15.351941747572816,
|
2077 |
-
"grad_norm": 0.815531849861145,
|
2078 |
-
"learning_rate": 6.972087378640776e-05,
|
2079 |
-
"loss": 0.2378,
|
2080 |
-
"step": 25300
|
2081 |
-
},
|
2082 |
-
{
|
2083 |
-
"epoch": 15.412621359223301,
|
2084 |
-
"grad_norm": 0.47219938039779663,
|
2085 |
-
"learning_rate": 6.881067961165048e-05,
|
2086 |
-
"loss": 0.2363,
|
2087 |
-
"step": 25400
|
2088 |
-
},
|
2089 |
-
{
|
2090 |
-
"epoch": 15.473300970873787,
|
2091 |
-
"grad_norm": 1.4584532976150513,
|
2092 |
-
"learning_rate": 6.79004854368932e-05,
|
2093 |
-
"loss": 0.2323,
|
2094 |
-
"step": 25500
|
2095 |
-
},
|
2096 |
-
{
|
2097 |
-
"epoch": 15.533980582524272,
|
2098 |
-
"grad_norm": 0.5099394917488098,
|
2099 |
-
"learning_rate": 6.699029126213592e-05,
|
2100 |
-
"loss": 0.2343,
|
2101 |
-
"step": 25600
|
2102 |
-
},
|
2103 |
-
{
|
2104 |
-
"epoch": 15.594660194174757,
|
2105 |
-
"grad_norm": 0.624839186668396,
|
2106 |
-
"learning_rate": 6.608009708737864e-05,
|
2107 |
-
"loss": 0.2357,
|
2108 |
-
"step": 25700
|
2109 |
-
},
|
2110 |
-
{
|
2111 |
-
"epoch": 15.655339805825243,
|
2112 |
-
"grad_norm": 0.9318602085113525,
|
2113 |
-
"learning_rate": 6.516990291262135e-05,
|
2114 |
-
"loss": 0.2331,
|
2115 |
-
"step": 25800
|
2116 |
-
},
|
2117 |
-
{
|
2118 |
-
"epoch": 15.716019417475728,
|
2119 |
-
"grad_norm": 0.6715418100357056,
|
2120 |
-
"learning_rate": 6.425970873786407e-05,
|
2121 |
-
"loss": 0.2365,
|
2122 |
-
"step": 25900
|
2123 |
-
},
|
2124 |
-
{
|
2125 |
-
"epoch": 15.776699029126213,
|
2126 |
-
"grad_norm": 0.48603758215904236,
|
2127 |
-
"learning_rate": 6.334951456310678e-05,
|
2128 |
-
"loss": 0.2392,
|
2129 |
-
"step": 26000
|
2130 |
-
},
|
2131 |
-
{
|
2132 |
-
"epoch": 15.776699029126213,
|
2133 |
-
"eval_accuracy": 0.7145326135660486,
|
2134 |
-
"eval_f1_macro": 0.49345940490874235,
|
2135 |
-
"eval_loss": 0.2531893253326416,
|
2136 |
-
"eval_precision": 0.6264577154052439,
|
2137 |
-
"eval_recall": 0.4631683363045007,
|
2138 |
-
"eval_runtime": 63.9314,
|
2139 |
-
"eval_samples_per_second": 733.082,
|
2140 |
-
"eval_steps_per_second": 5.741,
|
2141 |
-
"step": 26000
|
2142 |
-
},
|
2143 |
-
{
|
2144 |
-
"epoch": 15.837378640776699,
|
2145 |
-
"grad_norm": 1.03753662109375,
|
2146 |
-
"learning_rate": 6.243932038834951e-05,
|
2147 |
-
"loss": 0.234,
|
2148 |
-
"step": 26100
|
2149 |
-
},
|
2150 |
-
{
|
2151 |
-
"epoch": 15.898058252427184,
|
2152 |
-
"grad_norm": 0.7353742718696594,
|
2153 |
-
"learning_rate": 6.152912621359223e-05,
|
2154 |
-
"loss": 0.2381,
|
2155 |
-
"step": 26200
|
2156 |
-
},
|
2157 |
-
{
|
2158 |
-
"epoch": 15.95873786407767,
|
2159 |
-
"grad_norm": 0.8260138034820557,
|
2160 |
-
"learning_rate": 6.061893203883495e-05,
|
2161 |
-
"loss": 0.2394,
|
2162 |
-
"step": 26300
|
2163 |
-
},
|
2164 |
-
{
|
2165 |
-
"epoch": 16.019417475728154,
|
2166 |
-
"grad_norm": 0.7960408926010132,
|
2167 |
-
"learning_rate": 5.9708737864077663e-05,
|
2168 |
-
"loss": 0.2377,
|
2169 |
-
"step": 26400
|
2170 |
-
},
|
2171 |
-
{
|
2172 |
-
"epoch": 16.08009708737864,
|
2173 |
-
"grad_norm": 0.5640716552734375,
|
2174 |
-
"learning_rate": 5.879854368932038e-05,
|
2175 |
-
"loss": 0.2374,
|
2176 |
-
"step": 26500
|
2177 |
-
},
|
2178 |
-
{
|
2179 |
-
"epoch": 16.140776699029125,
|
2180 |
-
"grad_norm": 0.8281972408294678,
|
2181 |
-
"learning_rate": 5.78883495145631e-05,
|
2182 |
-
"loss": 0.2369,
|
2183 |
-
"step": 26600
|
2184 |
-
},
|
2185 |
-
{
|
2186 |
-
"epoch": 16.20145631067961,
|
2187 |
-
"grad_norm": 0.49466079473495483,
|
2188 |
-
"learning_rate": 5.697815533980582e-05,
|
2189 |
-
"loss": 0.2352,
|
2190 |
-
"step": 26700
|
2191 |
-
},
|
2192 |
-
{
|
2193 |
-
"epoch": 16.262135922330096,
|
2194 |
-
"grad_norm": 0.5278394818305969,
|
2195 |
-
"learning_rate": 5.6067961165048536e-05,
|
2196 |
-
"loss": 0.2321,
|
2197 |
-
"step": 26800
|
2198 |
-
},
|
2199 |
-
{
|
2200 |
-
"epoch": 16.32281553398058,
|
2201 |
-
"grad_norm": 1.5943635702133179,
|
2202 |
-
"learning_rate": 5.515776699029126e-05,
|
2203 |
-
"loss": 0.2368,
|
2204 |
-
"step": 26900
|
2205 |
-
},
|
2206 |
-
{
|
2207 |
-
"epoch": 16.383495145631066,
|
2208 |
-
"grad_norm": 0.7204076647758484,
|
2209 |
-
"learning_rate": 5.4247572815533976e-05,
|
2210 |
-
"loss": 0.2344,
|
2211 |
-
"step": 27000
|
2212 |
-
},
|
2213 |
-
{
|
2214 |
-
"epoch": 16.383495145631066,
|
2215 |
-
"eval_accuracy": 0.7135511127232381,
|
2216 |
-
"eval_f1_macro": 0.4959826756763837,
|
2217 |
-
"eval_loss": 0.2531072497367859,
|
2218 |
-
"eval_precision": 0.5967354989597543,
|
2219 |
-
"eval_recall": 0.4670103239766295,
|
2220 |
-
"eval_runtime": 63.8776,
|
2221 |
-
"eval_samples_per_second": 733.7,
|
2222 |
-
"eval_steps_per_second": 5.745,
|
2223 |
-
"step": 27000
|
2224 |
-
}
|
2225 |
-
],
|
2226 |
-
"logging_steps": 100,
|
2227 |
-
"max_steps": 32960,
|
2228 |
-
"num_input_tokens_seen": 0,
|
2229 |
-
"num_train_epochs": 20,
|
2230 |
-
"save_steps": 1000,
|
2231 |
-
"total_flos": 1.8182410386600591e+18,
|
2232 |
-
"train_batch_size": 256,
|
2233 |
-
"trial_name": null,
|
2234 |
-
"trial_params": null
|
2235 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|