import torch import argparse from transformers import AutoTokenizer, AutoModelForSequenceClassification from datasets import load_dataset def main(args): tokenizer = AutoTokenizer.from_pretrained(args.model_name) model = AutoModelForSequenceClassification.from_pretrained(args.model_name, torch_dtype=torch.bfloat16) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) dataset = load_dataset(args.dataset_name, args.dataset_config, split="train", cache_dir="/scratch/cosmo/cache/", num_proc=12) dataset = dataset.filter(lambda x, i: i % args.num_shards == args.shard, with_indices=True, num_proc=12) def compute_scores(batch): inputs = tokenizer(batch[args.text_column], return_tensors="pt", padding="longest", truncation=True).to(device) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits.squeeze(-1).float().cpu().numpy() batch["score"] = logits.tolist() batch["int_score"] = [int(round(max(0, min(score, 5)))) for score in logits] return batch dataset = dataset.map(compute_scores, batched=True, batch_size=512) while True: try: config_name = f"{args.output_dataset_config}_{args.shard}" dataset.push_to_hub(args.output_dataset_name, config_name=config_name, private=True, max_shard_size="4096MB") break except Exception as e: print(e) continue if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model_name", type=str, default="HuggingFaceFW/fineweb-edu-classifier") parser.add_argument("--dataset_name", type=str, default="HuggingFaceFW/fineweb") parser.add_argument("--dataset_config", type=str, default="default") parser.add_argument("--output_dataset_name", type=str, default="HuggingFaceFW/fineweb-edu") parser.add_argument("--output_dataset_config", type=str, default="default") parser.add_argument("--text_column", type=str, default="text") parser.add_argument("--shard", type=int, required=True) parser.add_argument("--num_shards", type=int, required=True) args = parser.parse_args() main(args)