Upload Florence2ForConditionalGeneration
Browse files- config.json +2 -2
- model.safetensors +1 -1
- modeling_florence2.py +3 -4
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "model_checkpoints/
|
3 |
"architectures": [
|
4 |
"Florence2ForConditionalGeneration"
|
5 |
],
|
@@ -160,7 +160,7 @@
|
|
160 |
"length_penalty": 1.0,
|
161 |
"max_length": 20,
|
162 |
"min_length": 0,
|
163 |
-
"model_type": "
|
164 |
"no_repeat_ngram_size": 0,
|
165 |
"num_beam_groups": 1,
|
166 |
"num_beams": 1,
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "model_checkpoints/vqainstruct_no_lora/epoch_5",
|
3 |
"architectures": [
|
4 |
"Florence2ForConditionalGeneration"
|
5 |
],
|
|
|
160 |
"length_penalty": 1.0,
|
161 |
"max_length": 20,
|
162 |
"min_length": 0,
|
163 |
+
"model_type": "",
|
164 |
"no_repeat_ngram_size": 0,
|
165 |
"num_beam_groups": 1,
|
166 |
"num_beams": 1,
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3291921348
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d9a3bc6abcace5e9820630945fe26cfa961fe2577f8adeb48256acba876123e
|
3 |
size 3291921348
|
modeling_florence2.py
CHANGED
@@ -2288,8 +2288,7 @@ class Florence2Seq2SeqLMOutput(ModelOutput):
|
|
2288 |
|
2289 |
image_hidden_states of the model produced by the vision encoder
|
2290 |
"""
|
2291 |
-
|
2292 |
-
loss: torch.FloatTensor = None
|
2293 |
logits: torch.FloatTensor = None
|
2294 |
last_hidden_state: torch.FloatTensor = None
|
2295 |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
@@ -2530,7 +2529,6 @@ class Florence2ForConditionalGeneration(Florence2PreTrainedModel):
|
|
2530 |
def __init__(self, config: Florence2Config):
|
2531 |
super().__init__(config)
|
2532 |
assert config.vision_config.model_type == 'davit', 'only DaViT is supported for now'
|
2533 |
-
# del config.vision_config.model_type
|
2534 |
self.vision_tower = DaViT.from_config(config=config.vision_config)
|
2535 |
# remove unused layers
|
2536 |
del self.vision_tower.head
|
@@ -2734,7 +2732,8 @@ class Florence2ForConditionalGeneration(Florence2PreTrainedModel):
|
|
2734 |
image_features = self._encode_image(pixel_values)
|
2735 |
inputs_embeds, attention_mask = self._merge_input_ids_with_image_features(image_features, inputs_embeds)
|
2736 |
|
2737 |
-
|
|
|
2738 |
outputs = self.language_model(
|
2739 |
attention_mask=attention_mask,
|
2740 |
labels=labels,
|
|
|
2288 |
|
2289 |
image_hidden_states of the model produced by the vision encoder
|
2290 |
"""
|
2291 |
+
loss: Optional[torch.FloatTensor] = None
|
|
|
2292 |
logits: torch.FloatTensor = None
|
2293 |
last_hidden_state: torch.FloatTensor = None
|
2294 |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
|
|
2529 |
def __init__(self, config: Florence2Config):
|
2530 |
super().__init__(config)
|
2531 |
assert config.vision_config.model_type == 'davit', 'only DaViT is supported for now'
|
|
|
2532 |
self.vision_tower = DaViT.from_config(config=config.vision_config)
|
2533 |
# remove unused layers
|
2534 |
del self.vision_tower.head
|
|
|
2732 |
image_features = self._encode_image(pixel_values)
|
2733 |
inputs_embeds, attention_mask = self._merge_input_ids_with_image_features(image_features, inputs_embeds)
|
2734 |
|
2735 |
+
if inputs_embeds is not None:
|
2736 |
+
attention_mask = attention_mask.to(inputs_embeds.dtype)
|
2737 |
outputs = self.language_model(
|
2738 |
attention_mask=attention_mask,
|
2739 |
labels=labels,
|