HugoLaurencon
commited on
Commit
•
51434b1
1
Parent(s):
2a6cc90
first commit
Browse files- README.md +3 -0
- config.json +31 -0
- configuration_siglip.py +306 -0
- convert_siglip_to_hf.py +413 -0
- image_processing_siglip.py +225 -0
- model.safetensors +3 -0
- modeling_siglip.py +1420 -0
- processing_siglip.py +143 -0
- tokenization_siglip.py +389 -0
README.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "HuggingFaceM4/siglip-so400m-14-700-flash-attn2-navit",
|
3 |
+
"architectures": [
|
4 |
+
"SiglipModel"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "HuggingFaceM4/siglip-so400m-14-700-flash-attn2-navit--configuration_siglip.SiglipConfig",
|
8 |
+
"AutoModel": "HuggingFaceM4/siglip-so400m-14-700-flash-attn2-navit--modeling_siglip.SiglipModel"
|
9 |
+
},
|
10 |
+
"initializer_factor": 1.0,
|
11 |
+
"model_type": "siglip",
|
12 |
+
"text_config": {
|
13 |
+
"hidden_size": 1152,
|
14 |
+
"intermediate_size": 4304,
|
15 |
+
"model_type": "siglip_text_model",
|
16 |
+
"num_attention_heads": 16,
|
17 |
+
"num_hidden_layers": 27
|
18 |
+
},
|
19 |
+
"torch_dtype": "float32",
|
20 |
+
"transformers_version": "4.37.0.dev0",
|
21 |
+
"vision_config": {
|
22 |
+
"hidden_size": 1152,
|
23 |
+
"image_size": 700,
|
24 |
+
"intermediate_size": 4304,
|
25 |
+
"model_type": "siglip_vision_model",
|
26 |
+
"num_attention_heads": 16,
|
27 |
+
"num_hidden_layers": 27,
|
28 |
+
"patch_size": 14
|
29 |
+
}
|
30 |
+
}
|
31 |
+
|
configuration_siglip.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Siglip model configuration"""
|
16 |
+
|
17 |
+
import os
|
18 |
+
from typing import Union
|
19 |
+
|
20 |
+
from transformers.configuration_utils import PretrainedConfig
|
21 |
+
from transformers.utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
SIGLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
27 |
+
"google/siglip-base-patch16-224": "https://huggingface.co/google/siglip-base-patch16-224/resolve/main/config.json",
|
28 |
+
}
|
29 |
+
|
30 |
+
|
31 |
+
class SiglipTextConfig(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`SiglipTextModel`]. It is used to instantiate a
|
34 |
+
Siglip text encoder according to the specified arguments, defining the model architecture. Instantiating a
|
35 |
+
configuration with the defaults will yield a similar configuration to that of the text encoder of the Siglip
|
36 |
+
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
37 |
+
|
38 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
39 |
+
documentation from [`PretrainedConfig`] for more information.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
43 |
+
Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by
|
44 |
+
the `inputs_ids` passed when calling [`SiglipModel`].
|
45 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
46 |
+
Dimensionality of the encoder layers and the pooler layer.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
48 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
50 |
+
Number of hidden layers in the Transformer encoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
52 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
+
max_position_embeddings (`int`, *optional*, defaults to 64):
|
54 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
55 |
+
just in case (e.g., 512 or 1024 or 2048).
|
56 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
57 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
58 |
+
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
59 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
60 |
+
The epsilon used by the layer normalization layers.
|
61 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
62 |
+
The dropout ratio for the attention probabilities.
|
63 |
+
pad_token_id (`int`, *optional*, defaults to 1):
|
64 |
+
The id of the padding token in the vocabulary.
|
65 |
+
bos_token_id (`int`, *optional*, defaults to 49406):
|
66 |
+
The id of the beginning-of-sequence token in the vocabulary.
|
67 |
+
eos_token_id (`int`, *optional*, defaults to 49407):
|
68 |
+
The id of the end-of-sequence token in the vocabulary.
|
69 |
+
|
70 |
+
Example:
|
71 |
+
|
72 |
+
```python
|
73 |
+
>>> from transformers import SiglipTextConfig, SiglipTextModel
|
74 |
+
|
75 |
+
>>> # Initializing a SiglipTextConfig with google/siglip-base-patch16-224 style configuration
|
76 |
+
>>> configuration = SiglipTextConfig()
|
77 |
+
|
78 |
+
>>> # Initializing a SiglipTextModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
79 |
+
>>> model = SiglipTextModel(configuration)
|
80 |
+
|
81 |
+
>>> # Accessing the model configuration
|
82 |
+
>>> configuration = model.config
|
83 |
+
```"""
|
84 |
+
|
85 |
+
model_type = "siglip_text_model"
|
86 |
+
|
87 |
+
def __init__(
|
88 |
+
self,
|
89 |
+
vocab_size=32000,
|
90 |
+
hidden_size=768,
|
91 |
+
intermediate_size=3072,
|
92 |
+
num_hidden_layers=12,
|
93 |
+
num_attention_heads=12,
|
94 |
+
max_position_embeddings=64,
|
95 |
+
hidden_act="gelu_pytorch_tanh",
|
96 |
+
layer_norm_eps=1e-6,
|
97 |
+
attention_dropout=0.0,
|
98 |
+
# This differs from `CLIPTokenizer`'s default and from openai/siglip
|
99 |
+
# See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
|
100 |
+
pad_token_id=1,
|
101 |
+
bos_token_id=49406,
|
102 |
+
eos_token_id=49407,
|
103 |
+
_flash_attn_2_enabled=True,
|
104 |
+
**kwargs,
|
105 |
+
):
|
106 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
107 |
+
|
108 |
+
self.vocab_size = vocab_size
|
109 |
+
self.hidden_size = hidden_size
|
110 |
+
self.intermediate_size = intermediate_size
|
111 |
+
self.num_hidden_layers = num_hidden_layers
|
112 |
+
self.num_attention_heads = num_attention_heads
|
113 |
+
self.max_position_embeddings = max_position_embeddings
|
114 |
+
self.layer_norm_eps = layer_norm_eps
|
115 |
+
self.hidden_act = hidden_act
|
116 |
+
self.attention_dropout = attention_dropout
|
117 |
+
self._flash_attn_2_enabled = _flash_attn_2_enabled
|
118 |
+
|
119 |
+
@classmethod
|
120 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
121 |
+
cls._set_token_in_kwargs(kwargs)
|
122 |
+
|
123 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
124 |
+
|
125 |
+
# get the text config dict if we are loading from SiglipConfig
|
126 |
+
if config_dict.get("model_type") == "siglip":
|
127 |
+
config_dict = config_dict["text_config"]
|
128 |
+
|
129 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
130 |
+
logger.warning(
|
131 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
132 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
133 |
+
)
|
134 |
+
|
135 |
+
return cls.from_dict(config_dict, **kwargs)
|
136 |
+
|
137 |
+
|
138 |
+
class SiglipVisionConfig(PretrainedConfig):
|
139 |
+
r"""
|
140 |
+
This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
|
141 |
+
Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
142 |
+
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
|
143 |
+
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
144 |
+
|
145 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
146 |
+
documentation from [`PretrainedConfig`] for more information.
|
147 |
+
|
148 |
+
Args:
|
149 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
150 |
+
Dimensionality of the encoder layers and the pooler layer.
|
151 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
152 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
153 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
154 |
+
Number of hidden layers in the Transformer encoder.
|
155 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
156 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
157 |
+
num_channels (`int`, *optional*, defaults to 3):
|
158 |
+
Number of channels in the input images.
|
159 |
+
image_size (`int`, *optional*, defaults to 224):
|
160 |
+
The size (resolution) of each image.
|
161 |
+
patch_size (`int`, *optional*, defaults to 16):
|
162 |
+
The size (resolution) of each patch.
|
163 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
164 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
165 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
166 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
167 |
+
The epsilon used by the layer normalization layers.
|
168 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
169 |
+
The dropout ratio for the attention probabilities.
|
170 |
+
|
171 |
+
Example:
|
172 |
+
|
173 |
+
```python
|
174 |
+
>>> from transformers import SiglipVisionConfig, SiglipVisionModel
|
175 |
+
|
176 |
+
>>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
|
177 |
+
>>> configuration = SiglipVisionConfig()
|
178 |
+
|
179 |
+
>>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
180 |
+
>>> model = SiglipVisionModel(configuration)
|
181 |
+
|
182 |
+
>>> # Accessing the model configuration
|
183 |
+
>>> configuration = model.config
|
184 |
+
```"""
|
185 |
+
|
186 |
+
model_type = "siglip_vision_model"
|
187 |
+
|
188 |
+
def __init__(
|
189 |
+
self,
|
190 |
+
hidden_size=768,
|
191 |
+
intermediate_size=3072,
|
192 |
+
num_hidden_layers=12,
|
193 |
+
num_attention_heads=12,
|
194 |
+
num_channels=3,
|
195 |
+
image_size=224,
|
196 |
+
patch_size=16,
|
197 |
+
hidden_act="gelu_pytorch_tanh",
|
198 |
+
layer_norm_eps=1e-6,
|
199 |
+
attention_dropout=0.0,
|
200 |
+
_flash_attn_2_enabled=True,
|
201 |
+
**kwargs,
|
202 |
+
):
|
203 |
+
super().__init__(**kwargs)
|
204 |
+
|
205 |
+
self.hidden_size = hidden_size
|
206 |
+
self.intermediate_size = intermediate_size
|
207 |
+
self.num_hidden_layers = num_hidden_layers
|
208 |
+
self.num_attention_heads = num_attention_heads
|
209 |
+
self.num_channels = num_channels
|
210 |
+
self.patch_size = patch_size
|
211 |
+
self.image_size = image_size
|
212 |
+
self.attention_dropout = attention_dropout
|
213 |
+
self.layer_norm_eps = layer_norm_eps
|
214 |
+
self.hidden_act = hidden_act
|
215 |
+
self._flash_attn_2_enabled = _flash_attn_2_enabled
|
216 |
+
|
217 |
+
@classmethod
|
218 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
219 |
+
cls._set_token_in_kwargs(kwargs)
|
220 |
+
|
221 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
222 |
+
|
223 |
+
# get the vision config dict if we are loading from SiglipConfig
|
224 |
+
if config_dict.get("model_type") == "siglip":
|
225 |
+
config_dict = config_dict["vision_config"]
|
226 |
+
|
227 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
228 |
+
logger.warning(
|
229 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
230 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
231 |
+
)
|
232 |
+
|
233 |
+
return cls.from_dict(config_dict, **kwargs)
|
234 |
+
|
235 |
+
|
236 |
+
class SiglipConfig(PretrainedConfig):
|
237 |
+
r"""
|
238 |
+
[`SiglipConfig`] is the configuration class to store the configuration of a [`SiglipModel`]. It is used to
|
239 |
+
instantiate a Siglip model according to the specified arguments, defining the text model and vision model configs.
|
240 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the Siglip
|
241 |
+
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
242 |
+
|
243 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
244 |
+
documentation from [`PretrainedConfig`] for more information.
|
245 |
+
|
246 |
+
Args:
|
247 |
+
text_config (`dict`, *optional*):
|
248 |
+
Dictionary of configuration options used to initialize [`SiglipTextConfig`].
|
249 |
+
vision_config (`dict`, *optional*):
|
250 |
+
Dictionary of configuration options used to initialize [`SiglipVisionConfig`].
|
251 |
+
kwargs (*optional*):
|
252 |
+
Dictionary of keyword arguments.
|
253 |
+
|
254 |
+
Example:
|
255 |
+
|
256 |
+
```python
|
257 |
+
>>> from transformers import SiglipConfig, SiglipModel
|
258 |
+
|
259 |
+
>>> # Initializing a SiglipConfig with google/siglip-base-patch16-224 style configuration
|
260 |
+
>>> configuration = SiglipConfig()
|
261 |
+
|
262 |
+
>>> # Initializing a SiglipModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
263 |
+
>>> model = SiglipModel(configuration)
|
264 |
+
|
265 |
+
>>> # Accessing the model configuration
|
266 |
+
>>> configuration = model.config
|
267 |
+
|
268 |
+
>>> # We can also initialize a SiglipConfig from a SiglipTextConfig and a SiglipVisionConfig
|
269 |
+
>>> from transformers import SiglipTextConfig, SiglipVisionConfig
|
270 |
+
|
271 |
+
>>> # Initializing a SiglipText and SiglipVision configuration
|
272 |
+
>>> config_text = SiglipTextConfig()
|
273 |
+
>>> config_vision = SiglipVisionConfig()
|
274 |
+
|
275 |
+
>>> config = SiglipConfig.from_text_vision_configs(config_text, config_vision)
|
276 |
+
```"""
|
277 |
+
|
278 |
+
model_type = "siglip"
|
279 |
+
|
280 |
+
def __init__(self, text_config=None, vision_config=None, **kwargs):
|
281 |
+
super().__init__(**kwargs)
|
282 |
+
|
283 |
+
if text_config is None:
|
284 |
+
text_config = {}
|
285 |
+
logger.info("`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.")
|
286 |
+
|
287 |
+
if vision_config is None:
|
288 |
+
vision_config = {}
|
289 |
+
logger.info("`vision_config` is `None`. initializing the `SiglipVisionConfig` with default values.")
|
290 |
+
|
291 |
+
self.text_config = SiglipTextConfig(**text_config)
|
292 |
+
self.vision_config = SiglipVisionConfig(**vision_config)
|
293 |
+
|
294 |
+
self.initializer_factor = 1.0
|
295 |
+
|
296 |
+
@classmethod
|
297 |
+
def from_text_vision_configs(cls, text_config: SiglipTextConfig, vision_config: SiglipVisionConfig, **kwargs):
|
298 |
+
r"""
|
299 |
+
Instantiate a [`SiglipConfig`] (or a derived class) from siglip text model configuration and siglip vision
|
300 |
+
model configuration.
|
301 |
+
|
302 |
+
Returns:
|
303 |
+
[`SiglipConfig`]: An instance of a configuration object
|
304 |
+
"""
|
305 |
+
|
306 |
+
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
convert_siglip_to_hf.py
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert SigLIP checkpoints from the original repository.
|
16 |
+
|
17 |
+
URL: https://github.com/google-research/big_vision/tree/main
|
18 |
+
"""
|
19 |
+
|
20 |
+
|
21 |
+
import argparse
|
22 |
+
import collections
|
23 |
+
from pathlib import Path
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import requests
|
27 |
+
import torch
|
28 |
+
from huggingface_hub import hf_hub_download
|
29 |
+
from numpy import load
|
30 |
+
from PIL import Image
|
31 |
+
|
32 |
+
from transformers import SiglipConfig, SiglipImageProcessor, SiglipModel, SiglipProcessor, SiglipTokenizer
|
33 |
+
from transformers.utils import logging
|
34 |
+
|
35 |
+
|
36 |
+
logging.set_verbosity_info()
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
|
40 |
+
model_name_to_checkpoint = {
|
41 |
+
# base checkpoints
|
42 |
+
"siglip-base-patch16-224": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_224_63724782.npz",
|
43 |
+
"siglip-base-patch16-256": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_256_60500360.npz",
|
44 |
+
"siglip-base-patch16-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_384_68578854.npz",
|
45 |
+
"siglip-base-patch16-512": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_512_68580893.npz",
|
46 |
+
# large checkpoints
|
47 |
+
"siglip-large-patch16-256": "/Users/nielsrogge/Documents/SigLIP/webli_en_l16_256_60552751.npz",
|
48 |
+
"siglip-large-patch16-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_l16_384_63634585.npz",
|
49 |
+
# multilingual checkpoint
|
50 |
+
"siglip-base-patch16-256-i18n": "/Users/nielsrogge/Documents/SigLIP/webli_i18n_b16_256_66117334.npz",
|
51 |
+
# so400m checkpoints
|
52 |
+
"siglip-so400m-patch14-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_so400m_384_58765454.npz",
|
53 |
+
}
|
54 |
+
|
55 |
+
model_name_to_image_size = {
|
56 |
+
"siglip-base-patch16-224": 224,
|
57 |
+
"siglip-base-patch16-256": 256,
|
58 |
+
"siglip-base-patch16-384": 384,
|
59 |
+
"siglip-base-patch16-512": 512,
|
60 |
+
"siglip-large-patch16-256": 256,
|
61 |
+
"siglip-large-patch16-384": 384,
|
62 |
+
"siglip-base-patch16-256-i18n": 256,
|
63 |
+
"siglip-so400m-patch14-384": 384,
|
64 |
+
}
|
65 |
+
|
66 |
+
|
67 |
+
def get_siglip_config(model_name):
|
68 |
+
config = SiglipConfig()
|
69 |
+
|
70 |
+
vocab_size = 250000 if "i18n" in model_name else 32000
|
71 |
+
image_size = model_name_to_image_size[model_name]
|
72 |
+
patch_size = 16 if "patch16" in model_name else 14
|
73 |
+
|
74 |
+
# size of the architecture
|
75 |
+
config.vision_config.image_size = image_size
|
76 |
+
config.vision_config.patch_size = patch_size
|
77 |
+
config.text_config.vocab_size = vocab_size
|
78 |
+
|
79 |
+
if "base" in model_name:
|
80 |
+
pass
|
81 |
+
elif "large" in model_name:
|
82 |
+
config.text_config.hidden_size = 1024
|
83 |
+
config.text_config.intermediate_size = 4096
|
84 |
+
config.text_config.num_hidden_layers = 24
|
85 |
+
config.text_config.num_attention_heads = 16
|
86 |
+
config.vision_config.hidden_size = 1024
|
87 |
+
config.vision_config.intermediate_size = 4096
|
88 |
+
config.vision_config.num_hidden_layers = 24
|
89 |
+
config.vision_config.num_attention_heads = 16
|
90 |
+
elif "so400m" in model_name:
|
91 |
+
config.text_config.hidden_size = 1152
|
92 |
+
config.text_config.intermediate_size = 4304
|
93 |
+
config.text_config.num_hidden_layers = 27
|
94 |
+
config.text_config.num_attention_heads = 16
|
95 |
+
config.vision_config.hidden_size = 1152
|
96 |
+
config.vision_config.intermediate_size = 4304
|
97 |
+
config.vision_config.num_hidden_layers = 27
|
98 |
+
config.vision_config.num_attention_heads = 16
|
99 |
+
else:
|
100 |
+
raise ValueError("Model not supported")
|
101 |
+
|
102 |
+
return config
|
103 |
+
|
104 |
+
|
105 |
+
def create_rename_keys(config):
|
106 |
+
rename_keys = []
|
107 |
+
# fmt: off
|
108 |
+
|
109 |
+
# vision encoder
|
110 |
+
|
111 |
+
rename_keys.append(("params/img/embedding/kernel", "vision_model.embeddings.patch_embedding.weight"))
|
112 |
+
rename_keys.append(("params/img/embedding/bias", "vision_model.embeddings.patch_embedding.bias"))
|
113 |
+
rename_keys.append(("params/img/pos_embedding", "vision_model.embeddings.position_embedding.weight"))
|
114 |
+
|
115 |
+
for i in range(config.vision_config.num_hidden_layers):
|
116 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_0/scale", f"vision_model.encoder.layers.{i}.layer_norm1.weight"))
|
117 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_0/bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias"))
|
118 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_1/scale", f"vision_model.encoder.layers.{i}.layer_norm2.weight"))
|
119 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_1/bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias"))
|
120 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_0/kernel", f"vision_model.encoder.layers.{i}.mlp.fc1.weight"))
|
121 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_0/bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias"))
|
122 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_1/kernel", f"vision_model.encoder.layers.{i}.mlp.fc2.weight"))
|
123 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_1/bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias"))
|
124 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/key/kernel", f"vision_model.encoder.layers.{i}.self_attn.k_proj.weight"))
|
125 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/key/bias", f"vision_model.encoder.layers.{i}.self_attn.k_proj.bias"))
|
126 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/value/kernel", f"vision_model.encoder.layers.{i}.self_attn.v_proj.weight"))
|
127 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/value/bias", f"vision_model.encoder.layers.{i}.self_attn.v_proj.bias"))
|
128 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/query/kernel", f"vision_model.encoder.layers.{i}.self_attn.q_proj.weight"))
|
129 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/query/bias", f"vision_model.encoder.layers.{i}.self_attn.q_proj.bias"))
|
130 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/out/kernel", f"vision_model.encoder.layers.{i}.self_attn.out_proj.weight"))
|
131 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/out/bias", f"vision_model.encoder.layers.{i}.self_attn.out_proj.bias"))
|
132 |
+
|
133 |
+
rename_keys.append(("params/img/Transformer/encoder_norm/scale", "vision_model.post_layernorm.weight"))
|
134 |
+
rename_keys.append(("params/img/Transformer/encoder_norm/bias", "vision_model.post_layernorm.bias"))
|
135 |
+
|
136 |
+
rename_keys.append(("params/img/MAPHead_0/probe", "vision_model.head.probe"))
|
137 |
+
rename_keys.append(("params/img/MAPHead_0/LayerNorm_0/scale", "vision_model.head.layernorm.weight"))
|
138 |
+
rename_keys.append(("params/img/MAPHead_0/LayerNorm_0/bias", "vision_model.head.layernorm.bias"))
|
139 |
+
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_0/kernel", "vision_model.head.mlp.fc1.weight"))
|
140 |
+
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_0/bias", "vision_model.head.mlp.fc1.bias"))
|
141 |
+
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_1/kernel", "vision_model.head.mlp.fc2.weight"))
|
142 |
+
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_1/bias", "vision_model.head.mlp.fc2.bias"))
|
143 |
+
rename_keys.append(("params/img/MAPHead_0/MultiHeadDotProductAttention_0/out/kernel", "vision_model.head.attention.out_proj.weight"))
|
144 |
+
rename_keys.append(("params/img/MAPHead_0/MultiHeadDotProductAttention_0/out/bias", "vision_model.head.attention.out_proj.bias"))
|
145 |
+
|
146 |
+
# text encoder
|
147 |
+
|
148 |
+
rename_keys.append(("params/txt/Embed_0/embedding", "text_model.embeddings.token_embedding.weight"))
|
149 |
+
rename_keys.append(("params/txt/pos_embedding", "text_model.embeddings.position_embedding.weight"))
|
150 |
+
|
151 |
+
for i in range(config.text_config.num_hidden_layers):
|
152 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_0/scale", f"text_model.encoder.layers.{i}.layer_norm1.weight"))
|
153 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_0/bias", f"text_model.encoder.layers.{i}.layer_norm1.bias"))
|
154 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_1/scale", f"text_model.encoder.layers.{i}.layer_norm2.weight"))
|
155 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_1/bias", f"text_model.encoder.layers.{i}.layer_norm2.bias"))
|
156 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_0/kernel", f"text_model.encoder.layers.{i}.mlp.fc1.weight"))
|
157 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_0/bias", f"text_model.encoder.layers.{i}.mlp.fc1.bias"))
|
158 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_1/kernel", f"text_model.encoder.layers.{i}.mlp.fc2.weight"))
|
159 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_1/bias", f"text_model.encoder.layers.{i}.mlp.fc2.bias"))
|
160 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/key/kernel", f"text_model.encoder.layers.{i}.self_attn.k_proj.weight"))
|
161 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/key/bias", f"text_model.encoder.layers.{i}.self_attn.k_proj.bias"))
|
162 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/value/kernel", f"text_model.encoder.layers.{i}.self_attn.v_proj.weight"))
|
163 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/value/bias", f"text_model.encoder.layers.{i}.self_attn.v_proj.bias"))
|
164 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/query/kernel", f"text_model.encoder.layers.{i}.self_attn.q_proj.weight"))
|
165 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/query/bias", f"text_model.encoder.layers.{i}.self_attn.q_proj.bias"))
|
166 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/out/kernel", f"text_model.encoder.layers.{i}.self_attn.out_proj.weight"))
|
167 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/out/bias", f"text_model.encoder.layers.{i}.self_attn.out_proj.bias"))
|
168 |
+
|
169 |
+
rename_keys.append(("params/txt/Encoder_0/encoder_norm/scale", "text_model.final_layer_norm.weight"))
|
170 |
+
rename_keys.append(("params/txt/Encoder_0/encoder_norm/bias", "text_model.final_layer_norm.bias"))
|
171 |
+
rename_keys.append(("params/txt/head/kernel", "text_model.head.weight"))
|
172 |
+
rename_keys.append(("params/txt/head/bias", "text_model.head.bias"))
|
173 |
+
|
174 |
+
# learned temperature and bias
|
175 |
+
rename_keys.append(("params/t", "logit_scale"))
|
176 |
+
rename_keys.append(("params/b", "logit_bias"))
|
177 |
+
|
178 |
+
# fmt: on
|
179 |
+
return rename_keys
|
180 |
+
|
181 |
+
|
182 |
+
def rename_key(dct, old, new, config):
|
183 |
+
val = dct.pop(old)
|
184 |
+
|
185 |
+
if ("out_proj" in new or "v_proj" in new or "k_proj" in new or "q_proj" in new) and "vision" in new:
|
186 |
+
val = val.reshape(-1, config.vision_config.hidden_size)
|
187 |
+
if ("out_proj" in new or "v_proj" in new or "k_proj" in new or "q_proj" in new) and "text" in new:
|
188 |
+
val = val.reshape(-1, config.text_config.hidden_size)
|
189 |
+
|
190 |
+
if "patch_embedding.weight" in new:
|
191 |
+
val = val.transpose(3, 2, 0, 1)
|
192 |
+
elif new.endswith("weight") and "position_embedding" not in new and "token_embedding" not in new:
|
193 |
+
val = val.T
|
194 |
+
|
195 |
+
if "position_embedding" in new and "vision" in new:
|
196 |
+
val = val.reshape(-1, config.vision_config.hidden_size)
|
197 |
+
if "position_embedding" in new and "text" in new:
|
198 |
+
val = val.reshape(-1, config.text_config.hidden_size)
|
199 |
+
|
200 |
+
if new.endswith("bias"):
|
201 |
+
val = val.reshape(-1)
|
202 |
+
|
203 |
+
dct[new] = torch.from_numpy(val)
|
204 |
+
|
205 |
+
|
206 |
+
def read_in_q_k_v_head(state_dict, config):
|
207 |
+
# read in individual input projection layers
|
208 |
+
key_proj_weight = (
|
209 |
+
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/key/kernel")
|
210 |
+
.reshape(-1, config.vision_config.hidden_size)
|
211 |
+
.T
|
212 |
+
)
|
213 |
+
key_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/key/bias").reshape(-1)
|
214 |
+
value_proj_weight = (
|
215 |
+
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/value/kernel")
|
216 |
+
.reshape(-1, config.vision_config.hidden_size)
|
217 |
+
.T
|
218 |
+
)
|
219 |
+
value_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/value/bias").reshape(-1)
|
220 |
+
query_proj_weight = (
|
221 |
+
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/query/kernel")
|
222 |
+
.reshape(-1, config.vision_config.hidden_size)
|
223 |
+
.T
|
224 |
+
)
|
225 |
+
query_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/query/bias").reshape(-1)
|
226 |
+
|
227 |
+
# next, add them to the state dict as a single matrix + vector
|
228 |
+
state_dict["vision_model.head.attention.in_proj_weight"] = torch.from_numpy(
|
229 |
+
np.concatenate([query_proj_weight, key_proj_weight, value_proj_weight], axis=0)
|
230 |
+
)
|
231 |
+
state_dict["vision_model.head.attention.in_proj_bias"] = torch.from_numpy(
|
232 |
+
np.concatenate([query_proj_bias, key_proj_bias, value_proj_bias], axis=0)
|
233 |
+
)
|
234 |
+
|
235 |
+
|
236 |
+
# We will verify our results on an image of cute cats
|
237 |
+
def prepare_img():
|
238 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
239 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
240 |
+
return image
|
241 |
+
|
242 |
+
|
243 |
+
def flatten_nested_dict(params, parent_key="", sep="/"):
|
244 |
+
items = []
|
245 |
+
|
246 |
+
for k, v in params.items():
|
247 |
+
new_key = parent_key + sep + k if parent_key else k
|
248 |
+
|
249 |
+
if isinstance(v, collections.abc.MutableMapping):
|
250 |
+
items.extend(flatten_nested_dict(v, new_key, sep=sep).items())
|
251 |
+
else:
|
252 |
+
items.append((new_key, v))
|
253 |
+
return dict(items)
|
254 |
+
|
255 |
+
|
256 |
+
@torch.no_grad()
|
257 |
+
def convert_siglip_checkpoint(model_name, pytorch_dump_folder_path, verify_logits=True, push_to_hub=False):
|
258 |
+
"""
|
259 |
+
Copy/paste/tweak model's weights to our SigLIP structure.
|
260 |
+
"""
|
261 |
+
|
262 |
+
# define default SigLIP configuration
|
263 |
+
config = get_siglip_config(model_name)
|
264 |
+
|
265 |
+
# get checkpoint
|
266 |
+
checkpoint = model_name_to_checkpoint[model_name]
|
267 |
+
|
268 |
+
# get vocab file
|
269 |
+
if "i18n" in model_name:
|
270 |
+
vocab_file = "/Users/nielsrogge/Documents/SigLIP/multilingual_vocab/sentencepiece.model"
|
271 |
+
else:
|
272 |
+
vocab_file = "/Users/nielsrogge/Documents/SigLIP/english_vocab/sentencepiece.model"
|
273 |
+
|
274 |
+
# load original state dict
|
275 |
+
data = load(checkpoint)
|
276 |
+
state_dict = flatten_nested_dict(data)
|
277 |
+
|
278 |
+
# remove and rename some keys
|
279 |
+
rename_keys = create_rename_keys(config)
|
280 |
+
for src, dest in rename_keys:
|
281 |
+
rename_key(state_dict, src, dest, config)
|
282 |
+
|
283 |
+
# qkv matrices of attention pooling head need special treatment
|
284 |
+
read_in_q_k_v_head(state_dict, config)
|
285 |
+
|
286 |
+
# load HuggingFace model
|
287 |
+
model = SiglipModel(config).eval()
|
288 |
+
model.load_state_dict(state_dict)
|
289 |
+
|
290 |
+
# create processor
|
291 |
+
# important: make tokenizer not return attention_mask since original one doesn't require it
|
292 |
+
image_size = config.vision_config.image_size
|
293 |
+
size = {"height": image_size, "width": image_size}
|
294 |
+
image_processor = SiglipImageProcessor(size=size)
|
295 |
+
tokenizer = SiglipTokenizer(vocab_file=vocab_file, model_input_names=["input_ids"])
|
296 |
+
processor = SiglipProcessor(image_processor=image_processor, tokenizer=tokenizer)
|
297 |
+
|
298 |
+
# verify on dummy images and texts
|
299 |
+
url_1 = "https://cdn.openai.com/multimodal-neurons/assets/apple/apple-ipod.jpg"
|
300 |
+
image_1 = Image.open(requests.get(url_1, stream=True).raw).convert("RGB")
|
301 |
+
url_2 = "https://cdn.openai.com/multimodal-neurons/assets/apple/apple-blank.jpg"
|
302 |
+
image_2 = Image.open(requests.get(url_2, stream=True).raw).convert("RGB")
|
303 |
+
texts = ["an apple", "a picture of an apple"]
|
304 |
+
|
305 |
+
inputs = processor(images=[image_1, image_2], text=texts, return_tensors="pt", padding="max_length")
|
306 |
+
|
307 |
+
# verify input_ids against original ones
|
308 |
+
if image_size == 224:
|
309 |
+
filename = "siglip_pixel_values.pt"
|
310 |
+
elif image_size == 256:
|
311 |
+
filename = "siglip_pixel_values_256.pt"
|
312 |
+
elif image_size == 384:
|
313 |
+
filename = "siglip_pixel_values_384.pt"
|
314 |
+
elif image_size == 512:
|
315 |
+
filename = "siglip_pixel_values_512.pt"
|
316 |
+
else:
|
317 |
+
raise ValueError("Image size not supported")
|
318 |
+
|
319 |
+
filepath = hf_hub_download(repo_id="nielsr/test-image", filename=filename, repo_type="dataset")
|
320 |
+
original_pixel_values = torch.load(filepath)
|
321 |
+
filepath = hf_hub_download(repo_id="nielsr/test-image", filename="siglip_input_ids.pt", repo_type="dataset")
|
322 |
+
original_input_ids = torch.load(filepath)
|
323 |
+
|
324 |
+
if "i18n" not in model_name:
|
325 |
+
assert inputs.input_ids.tolist() == original_input_ids.tolist()
|
326 |
+
|
327 |
+
print("Mean of original pixel values:", original_pixel_values.mean())
|
328 |
+
print("Mean of new pixel values:", inputs.pixel_values.mean())
|
329 |
+
|
330 |
+
# note: we're testing with original pixel values here since we don't have exact pixel values
|
331 |
+
with torch.no_grad():
|
332 |
+
outputs = model(input_ids=inputs.input_ids, pixel_values=original_pixel_values)
|
333 |
+
|
334 |
+
# with torch.no_grad():
|
335 |
+
# outputs = model(input_ids=inputs.input_ids, pixel_values=inputs.pixel_values)
|
336 |
+
|
337 |
+
print(outputs.logits_per_image[:3, :3])
|
338 |
+
|
339 |
+
probs = torch.sigmoid(outputs.logits_per_image) # these are the probabilities
|
340 |
+
print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'")
|
341 |
+
print(f"{probs[0][1]:.1%} that image 0 is '{texts[1]}'")
|
342 |
+
|
343 |
+
if verify_logits:
|
344 |
+
if model_name == "siglip-base-patch16-224":
|
345 |
+
expected_slice = torch.tensor(
|
346 |
+
[[-2.9621, -2.1672], [-0.2713, 0.2910]],
|
347 |
+
)
|
348 |
+
elif model_name == "siglip-base-patch16-256":
|
349 |
+
expected_slice = torch.tensor(
|
350 |
+
[[-3.1146, -1.9894], [-0.7312, 0.6387]],
|
351 |
+
)
|
352 |
+
elif model_name == "siglip-base-patch16-384":
|
353 |
+
expected_slice = torch.tensor(
|
354 |
+
[[-2.8098, -2.1891], [-0.4242, 0.4102]],
|
355 |
+
)
|
356 |
+
elif model_name == "siglip-base-patch16-512":
|
357 |
+
expected_slice = torch.tensor(
|
358 |
+
[[-2.7899, -2.2668], [-0.4295, -0.0735]],
|
359 |
+
)
|
360 |
+
elif model_name == "siglip-large-patch16-256":
|
361 |
+
expected_slice = torch.tensor(
|
362 |
+
[[-1.5827, -0.5801], [-0.9153, 0.1363]],
|
363 |
+
)
|
364 |
+
elif model_name == "siglip-large-patch16-384":
|
365 |
+
expected_slice = torch.tensor(
|
366 |
+
[[-2.1523, -0.2899], [-0.2959, 0.7884]],
|
367 |
+
)
|
368 |
+
elif model_name == "siglip-so400m-patch14-384":
|
369 |
+
expected_slice = torch.tensor([[-1.2441, -0.6649], [-0.7060, 0.7374]])
|
370 |
+
elif model_name == "siglip-base-patch16-256-i18n":
|
371 |
+
expected_slice = torch.tensor(
|
372 |
+
[[-0.9064, 0.1073], [-0.0299, 0.5304]],
|
373 |
+
)
|
374 |
+
|
375 |
+
assert torch.allclose(outputs.logits_per_image[:3, :3], expected_slice, atol=1e-4)
|
376 |
+
print("Looks ok!")
|
377 |
+
|
378 |
+
if pytorch_dump_folder_path is not None:
|
379 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
380 |
+
print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
|
381 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
382 |
+
print(f"Saving processor to {pytorch_dump_folder_path}")
|
383 |
+
processor.save_pretrained(pytorch_dump_folder_path)
|
384 |
+
|
385 |
+
if push_to_hub:
|
386 |
+
model.push_to_hub(f"nielsr/{model_name}")
|
387 |
+
processor.push_to_hub(f"nielsr/{model_name}")
|
388 |
+
|
389 |
+
|
390 |
+
if __name__ == "__main__":
|
391 |
+
parser = argparse.ArgumentParser()
|
392 |
+
# Required parameters
|
393 |
+
parser.add_argument(
|
394 |
+
"--model_name",
|
395 |
+
default="siglip-base-patch16-224",
|
396 |
+
type=str,
|
397 |
+
choices=model_name_to_checkpoint.keys(),
|
398 |
+
help="Name of the model you'd like to convert.",
|
399 |
+
)
|
400 |
+
parser.add_argument(
|
401 |
+
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
|
402 |
+
)
|
403 |
+
parser.add_argument(
|
404 |
+
"--verify_logits",
|
405 |
+
action="store_false",
|
406 |
+
help="Whether to verify logits against the original implementation.",
|
407 |
+
)
|
408 |
+
parser.add_argument(
|
409 |
+
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
|
410 |
+
)
|
411 |
+
|
412 |
+
args = parser.parse_args()
|
413 |
+
convert_siglip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.verify_logits, args.push_to_hub)
|
image_processing_siglip.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for SigLIP."""
|
16 |
+
|
17 |
+
from typing import Dict, List, Optional, Union
|
18 |
+
|
19 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
20 |
+
from transformers.image_transforms import (
|
21 |
+
resize,
|
22 |
+
to_channel_dimension_format,
|
23 |
+
)
|
24 |
+
from transformers.image_utils import (
|
25 |
+
IMAGENET_STANDARD_MEAN,
|
26 |
+
IMAGENET_STANDARD_STD,
|
27 |
+
ChannelDimension,
|
28 |
+
ImageInput,
|
29 |
+
PILImageResampling,
|
30 |
+
infer_channel_dimension_format,
|
31 |
+
is_scaled_image,
|
32 |
+
make_list_of_images,
|
33 |
+
to_numpy_array,
|
34 |
+
valid_images,
|
35 |
+
)
|
36 |
+
from transformers.utils import TensorType, is_vision_available, logging
|
37 |
+
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__)
|
40 |
+
|
41 |
+
|
42 |
+
if is_vision_available():
|
43 |
+
import PIL
|
44 |
+
|
45 |
+
|
46 |
+
class SiglipImageProcessor(BaseImageProcessor):
|
47 |
+
r"""
|
48 |
+
Constructs a SigLIP image processor.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
52 |
+
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
|
53 |
+
`do_resize` in the `preprocess` method.
|
54 |
+
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
|
55 |
+
Size of the image after resizing. Can be overridden by `size` in the `preprocess` method.
|
56 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
|
57 |
+
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
|
58 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
59 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
|
60 |
+
the `preprocess` method.
|
61 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
62 |
+
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
|
63 |
+
method.
|
64 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
65 |
+
Whether to normalize the image by the specified mean and standard deviation. Can be overridden by
|
66 |
+
`do_normalize` in the `preprocess` method.
|
67 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
|
68 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
69 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
70 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
|
71 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
72 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
73 |
+
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
74 |
+
"""
|
75 |
+
|
76 |
+
model_input_names = ["pixel_values"]
|
77 |
+
|
78 |
+
def __init__(
|
79 |
+
self,
|
80 |
+
do_resize: bool = True,
|
81 |
+
size: Dict[str, int] = None,
|
82 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
83 |
+
do_rescale: bool = True,
|
84 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
85 |
+
do_normalize: bool = True,
|
86 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
87 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
88 |
+
**kwargs,
|
89 |
+
) -> None:
|
90 |
+
super().__init__(**kwargs)
|
91 |
+
size = size if size is not None else {"height": 224, "width": 224}
|
92 |
+
image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
93 |
+
image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
94 |
+
|
95 |
+
self.do_resize = do_resize
|
96 |
+
self.size = size
|
97 |
+
self.resample = resample
|
98 |
+
self.do_rescale = do_rescale
|
99 |
+
self.rescale_factor = rescale_factor
|
100 |
+
self.do_normalize = do_normalize
|
101 |
+
self.image_mean = image_mean
|
102 |
+
self.image_std = image_std
|
103 |
+
|
104 |
+
def preprocess(
|
105 |
+
self,
|
106 |
+
images: ImageInput,
|
107 |
+
do_resize: bool = None,
|
108 |
+
size: Dict[str, int] = None,
|
109 |
+
resample: PILImageResampling = None,
|
110 |
+
do_rescale: bool = None,
|
111 |
+
rescale_factor: float = None,
|
112 |
+
do_normalize: bool = None,
|
113 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
114 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
115 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
116 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
117 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
118 |
+
**kwargs,
|
119 |
+
) -> PIL.Image.Image:
|
120 |
+
"""
|
121 |
+
Preprocess an image or batch of images.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
images (`ImageInput`):
|
125 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
126 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
127 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
128 |
+
Whether to resize the image.
|
129 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
130 |
+
Size of the image after resizing.
|
131 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
132 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
133 |
+
has an effect if `do_resize` is set to `True`.
|
134 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
135 |
+
Whether to rescale the image.
|
136 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
137 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
138 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
139 |
+
Whether to normalize the image.
|
140 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
141 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
142 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
143 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
144 |
+
`True`.
|
145 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
146 |
+
The type of tensors to return. Can be one of:
|
147 |
+
- Unset: Return a list of `np.ndarray`.
|
148 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
149 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
150 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
151 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
152 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
153 |
+
The channel dimension format for the output image. Can be one of:
|
154 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
155 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
156 |
+
- Unset: Use the channel dimension format of the input image.
|
157 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
158 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
159 |
+
from the input image. Can be one of:
|
160 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
161 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
162 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
163 |
+
"""
|
164 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
165 |
+
size = size if size is not None else self.size
|
166 |
+
size = get_size_dict(size, param_name="size", default_to_square=False)
|
167 |
+
resample = resample if resample is not None else self.resample
|
168 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
169 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
170 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
171 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
172 |
+
image_std = image_std if image_std is not None else self.image_std
|
173 |
+
|
174 |
+
images = make_list_of_images(images)
|
175 |
+
|
176 |
+
if not valid_images(images):
|
177 |
+
raise ValueError(
|
178 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
179 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
180 |
+
)
|
181 |
+
|
182 |
+
if do_resize and size is None:
|
183 |
+
raise ValueError("Size must be specified if do_resize is True.")
|
184 |
+
|
185 |
+
if do_rescale and rescale_factor is None:
|
186 |
+
raise ValueError("Rescale factor must be specified if do_rescale is True.")
|
187 |
+
|
188 |
+
# All transformations expect numpy arrays.
|
189 |
+
images = [to_numpy_array(image) for image in images]
|
190 |
+
|
191 |
+
if is_scaled_image(images[0]) and do_rescale:
|
192 |
+
logger.warning_once(
|
193 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
194 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
195 |
+
)
|
196 |
+
|
197 |
+
if input_data_format is None:
|
198 |
+
# We assume that all images have the same channel dimension format.
|
199 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
200 |
+
|
201 |
+
if do_resize:
|
202 |
+
height, width = size["height"], size["width"]
|
203 |
+
images = [
|
204 |
+
resize(image=image, size=(height, width), resample=resample, input_data_format=input_data_format)
|
205 |
+
for image in images
|
206 |
+
]
|
207 |
+
|
208 |
+
if do_rescale:
|
209 |
+
images = [
|
210 |
+
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
211 |
+
for image in images
|
212 |
+
]
|
213 |
+
|
214 |
+
if do_normalize:
|
215 |
+
images = [
|
216 |
+
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
217 |
+
for image in images
|
218 |
+
]
|
219 |
+
|
220 |
+
images = [
|
221 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
222 |
+
]
|
223 |
+
|
224 |
+
data = {"pixel_values": images}
|
225 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6804c2e4d7eed5118c59fbf6b34e76363d6cf76332950f602b8a4669e8ae486e
|
3 |
+
size 3520111392
|
modeling_siglip.py
ADDED
@@ -0,0 +1,1420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Google AI and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch Siglip model."""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
import warnings
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from typing import Any, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import torch
|
25 |
+
import torch.nn.functional as F
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn.init import _calculate_fan_in_and_fan_out
|
29 |
+
|
30 |
+
from transformers.activations import ACT2FN
|
31 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
|
32 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
33 |
+
from transformers.modeling_utils import PreTrainedModel
|
34 |
+
from transformers.utils import (
|
35 |
+
ModelOutput,
|
36 |
+
add_start_docstrings,
|
37 |
+
add_start_docstrings_to_model_forward,
|
38 |
+
is_flash_attn_2_available,
|
39 |
+
logging,
|
40 |
+
replace_return_docstrings,
|
41 |
+
)
|
42 |
+
from .configuration_siglip import SiglipConfig, SiglipTextConfig, SiglipVisionConfig
|
43 |
+
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__)
|
46 |
+
|
47 |
+
_CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224"
|
48 |
+
|
49 |
+
SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
50 |
+
"google/siglip-base-patch16-224",
|
51 |
+
# See all SigLIP models at https://huggingface.co/models?filter=siglip
|
52 |
+
]
|
53 |
+
|
54 |
+
if is_flash_attn_2_available():
|
55 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
56 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
57 |
+
|
58 |
+
|
59 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
60 |
+
def _get_unpad_data(attention_mask):
|
61 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
62 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
63 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
64 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
65 |
+
return (
|
66 |
+
indices,
|
67 |
+
cu_seqlens,
|
68 |
+
max_seqlen_in_batch,
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
def _trunc_normal_(tensor, mean, std, a, b):
|
73 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
74 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
75 |
+
def norm_cdf(x):
|
76 |
+
# Computes standard normal cumulative distribution function
|
77 |
+
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
|
78 |
+
|
79 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
80 |
+
warnings.warn(
|
81 |
+
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
82 |
+
"The distribution of values may be incorrect.",
|
83 |
+
stacklevel=2,
|
84 |
+
)
|
85 |
+
|
86 |
+
# Values are generated by using a truncated uniform distribution and
|
87 |
+
# then using the inverse CDF for the normal distribution.
|
88 |
+
# Get upper and lower cdf values
|
89 |
+
l = norm_cdf((a - mean) / std)
|
90 |
+
u = norm_cdf((b - mean) / std)
|
91 |
+
|
92 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
93 |
+
# [2l-1, 2u-1].
|
94 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
95 |
+
|
96 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
97 |
+
# standard normal
|
98 |
+
if tensor.dtype in [torch.float16, torch.bfloat16]:
|
99 |
+
# The `erfinv_` op is not (yet?) defined in float16+cpu, bfloat16+gpu
|
100 |
+
og_dtype = tensor.dtype
|
101 |
+
tensor = tensor.to(torch.float32)
|
102 |
+
tensor.erfinv_()
|
103 |
+
tensor = tensor.to(og_dtype)
|
104 |
+
else:
|
105 |
+
tensor.erfinv_()
|
106 |
+
|
107 |
+
# Transform to proper mean, std
|
108 |
+
tensor.mul_(std * math.sqrt(2.0))
|
109 |
+
tensor.add_(mean)
|
110 |
+
|
111 |
+
# Clamp to ensure it's in the proper range
|
112 |
+
if tensor.dtype == torch.float16:
|
113 |
+
# The `clamp_` op is not (yet?) defined in float16+cpu
|
114 |
+
tensor = tensor.to(torch.float32)
|
115 |
+
tensor.clamp_(min=a, max=b)
|
116 |
+
tensor = tensor.to(torch.float16)
|
117 |
+
else:
|
118 |
+
tensor.clamp_(min=a, max=b)
|
119 |
+
|
120 |
+
|
121 |
+
def trunc_normal_tf_(
|
122 |
+
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
|
123 |
+
) -> torch.Tensor:
|
124 |
+
"""Fills the input Tensor with values drawn from a truncated
|
125 |
+
normal distribution. The values are effectively drawn from the
|
126 |
+
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
|
127 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
128 |
+
the bounds. The method used for generating the random values works
|
129 |
+
best when :math:`a \\leq \text{mean} \\leq b`.
|
130 |
+
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
|
131 |
+
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
|
132 |
+
and the result is subsquently scaled and shifted by the mean and std args.
|
133 |
+
Args:
|
134 |
+
tensor: an n-dimensional `torch.Tensor`
|
135 |
+
mean: the mean of the normal distribution
|
136 |
+
std: the standard deviation of the normal distribution
|
137 |
+
a: the minimum cutoff value
|
138 |
+
b: the maximum cutoff value
|
139 |
+
"""
|
140 |
+
with torch.no_grad():
|
141 |
+
_trunc_normal_(tensor, 0, 1.0, a, b)
|
142 |
+
tensor.mul_(std).add_(mean)
|
143 |
+
|
144 |
+
|
145 |
+
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
|
146 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
147 |
+
if mode == "fan_in":
|
148 |
+
denom = fan_in
|
149 |
+
elif mode == "fan_out":
|
150 |
+
denom = fan_out
|
151 |
+
elif mode == "fan_avg":
|
152 |
+
denom = (fan_in + fan_out) / 2
|
153 |
+
|
154 |
+
variance = scale / denom
|
155 |
+
|
156 |
+
if distribution == "truncated_normal":
|
157 |
+
# constant is stddev of standard normal truncated to (-2, 2)
|
158 |
+
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
|
159 |
+
elif distribution == "normal":
|
160 |
+
with torch.no_grad():
|
161 |
+
tensor.normal_(std=math.sqrt(variance))
|
162 |
+
elif distribution == "uniform":
|
163 |
+
bound = math.sqrt(3 * variance)
|
164 |
+
with torch.no_grad():
|
165 |
+
tensor.uniform_(-bound, bound)
|
166 |
+
else:
|
167 |
+
raise ValueError(f"invalid distribution {distribution}")
|
168 |
+
|
169 |
+
|
170 |
+
def lecun_normal_(tensor):
|
171 |
+
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
|
172 |
+
|
173 |
+
|
174 |
+
def default_flax_embed_init(tensor):
|
175 |
+
variance_scaling_(tensor, mode="fan_in", distribution="normal")
|
176 |
+
|
177 |
+
|
178 |
+
@dataclass
|
179 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip
|
180 |
+
class SiglipVisionModelOutput(ModelOutput):
|
181 |
+
"""
|
182 |
+
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
|
183 |
+
Args:
|
184 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
185 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
186 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
187 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
188 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
189 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
190 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
191 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
192 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
193 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
194 |
+
sequence_length)`.
|
195 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
196 |
+
heads.
|
197 |
+
"""
|
198 |
+
|
199 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
200 |
+
last_hidden_state: torch.FloatTensor = None
|
201 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
202 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
203 |
+
|
204 |
+
|
205 |
+
@dataclass
|
206 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Siglip
|
207 |
+
class SiglipTextModelOutput(ModelOutput):
|
208 |
+
"""
|
209 |
+
Base class for text model's outputs that also contains a pooling of the last hidden states.
|
210 |
+
Args:
|
211 |
+
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
212 |
+
The text embeddings obtained by applying the projection layer to the pooler_output.
|
213 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
214 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
215 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
216 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
217 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
218 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
219 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
220 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
221 |
+
sequence_length)`.
|
222 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
223 |
+
heads.
|
224 |
+
"""
|
225 |
+
|
226 |
+
text_embeds: Optional[torch.FloatTensor] = None
|
227 |
+
last_hidden_state: torch.FloatTensor = None
|
228 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
229 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
230 |
+
|
231 |
+
|
232 |
+
@dataclass
|
233 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->Siglip
|
234 |
+
class SiglipOutput(ModelOutput):
|
235 |
+
"""
|
236 |
+
Args:
|
237 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
238 |
+
Contrastive loss for image-text similarity.
|
239 |
+
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
240 |
+
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
241 |
+
similarity scores.
|
242 |
+
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
243 |
+
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
244 |
+
similarity scores.
|
245 |
+
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
246 |
+
The text embeddings obtained by applying the projection layer to the pooled output of [`SiglipTextModel`].
|
247 |
+
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
248 |
+
The image embeddings obtained by applying the projection layer to the pooled output of [`SiglipVisionModel`].
|
249 |
+
text_model_output(`BaseModelOutputWithPooling`):
|
250 |
+
The output of the [`SiglipTextModel`].
|
251 |
+
vision_model_output(`BaseModelOutputWithPooling`):
|
252 |
+
The output of the [`SiglipVisionModel`].
|
253 |
+
"""
|
254 |
+
|
255 |
+
loss: Optional[torch.FloatTensor] = None
|
256 |
+
logits_per_image: torch.FloatTensor = None
|
257 |
+
logits_per_text: torch.FloatTensor = None
|
258 |
+
text_embeds: torch.FloatTensor = None
|
259 |
+
image_embeds: torch.FloatTensor = None
|
260 |
+
text_model_output: BaseModelOutputWithPooling = None
|
261 |
+
vision_model_output: BaseModelOutputWithPooling = None
|
262 |
+
|
263 |
+
def to_tuple(self) -> Tuple[Any]:
|
264 |
+
return tuple(
|
265 |
+
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
266 |
+
for k in self.keys()
|
267 |
+
)
|
268 |
+
|
269 |
+
|
270 |
+
class SiglipVisionEmbeddings(nn.Module):
|
271 |
+
def __init__(self, config: SiglipVisionConfig):
|
272 |
+
super().__init__()
|
273 |
+
self.config = config
|
274 |
+
self.embed_dim = config.hidden_size
|
275 |
+
self.image_size = config.image_size
|
276 |
+
self.patch_size = config.patch_size
|
277 |
+
|
278 |
+
self.patch_embedding = nn.Conv2d(
|
279 |
+
in_channels=config.num_channels,
|
280 |
+
out_channels=self.embed_dim,
|
281 |
+
kernel_size=self.patch_size,
|
282 |
+
stride=self.patch_size,
|
283 |
+
padding="valid",
|
284 |
+
)
|
285 |
+
|
286 |
+
self.num_patches_per_side = self.image_size // self.patch_size
|
287 |
+
self.num_patches = self.num_patches_per_side**2
|
288 |
+
self.num_positions = self.num_patches
|
289 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
290 |
+
|
291 |
+
def forward(self, pixel_values: torch.FloatTensor, patch_attention_mask: torch.BoolTensor) -> torch.Tensor:
|
292 |
+
batch_size = pixel_values.size(0)
|
293 |
+
|
294 |
+
patch_embeds = self.patch_embedding(pixel_values)
|
295 |
+
embeddings = patch_embeds.flatten(2).transpose(1, 2)
|
296 |
+
|
297 |
+
max_im_h, max_im_w = pixel_values.size(2), pixel_values.size(3)
|
298 |
+
max_nb_patches_h, max_nb_patches_w = max_im_h // self.patch_size, max_im_w // self.patch_size
|
299 |
+
boundaries = torch.arange(1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side)
|
300 |
+
position_ids = torch.full(
|
301 |
+
size=(
|
302 |
+
batch_size,
|
303 |
+
max_nb_patches_h * max_nb_patches_w,
|
304 |
+
),
|
305 |
+
fill_value=0,
|
306 |
+
)
|
307 |
+
|
308 |
+
for batch_idx, p_attn_mask in enumerate(patch_attention_mask):
|
309 |
+
nb_patches_h = p_attn_mask[:, 0].sum()
|
310 |
+
nb_patches_w = p_attn_mask[0].sum()
|
311 |
+
|
312 |
+
fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h)
|
313 |
+
fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w)
|
314 |
+
|
315 |
+
bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True)
|
316 |
+
bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True)
|
317 |
+
|
318 |
+
pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w).flatten()
|
319 |
+
position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids
|
320 |
+
|
321 |
+
position_ids = position_ids.to(self.position_embedding.weight.device)
|
322 |
+
|
323 |
+
embeddings = embeddings + self.position_embedding(position_ids)
|
324 |
+
return embeddings
|
325 |
+
|
326 |
+
|
327 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->Siglip
|
328 |
+
class SiglipTextEmbeddings(nn.Module):
|
329 |
+
def __init__(self, config: SiglipTextConfig):
|
330 |
+
super().__init__()
|
331 |
+
embed_dim = config.hidden_size
|
332 |
+
|
333 |
+
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
334 |
+
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
335 |
+
|
336 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
337 |
+
self.register_buffer(
|
338 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
339 |
+
)
|
340 |
+
|
341 |
+
def forward(
|
342 |
+
self,
|
343 |
+
input_ids: Optional[torch.LongTensor] = None,
|
344 |
+
position_ids: Optional[torch.LongTensor] = None,
|
345 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
346 |
+
) -> torch.Tensor:
|
347 |
+
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
348 |
+
|
349 |
+
if position_ids is None:
|
350 |
+
position_ids = self.position_ids[:, :seq_length]
|
351 |
+
|
352 |
+
if inputs_embeds is None:
|
353 |
+
inputs_embeds = self.token_embedding(input_ids)
|
354 |
+
|
355 |
+
position_embeddings = self.position_embedding(position_ids)
|
356 |
+
embeddings = inputs_embeds + position_embeddings
|
357 |
+
|
358 |
+
return embeddings
|
359 |
+
|
360 |
+
|
361 |
+
class SiglipAttention(nn.Module):
|
362 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
363 |
+
|
364 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
|
365 |
+
def __init__(self, config):
|
366 |
+
super().__init__()
|
367 |
+
self.config = config
|
368 |
+
self.embed_dim = config.hidden_size
|
369 |
+
self.num_heads = config.num_attention_heads
|
370 |
+
self.head_dim = self.embed_dim // self.num_heads
|
371 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
372 |
+
raise ValueError(
|
373 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
374 |
+
f" {self.num_heads})."
|
375 |
+
)
|
376 |
+
self.scale = self.head_dim**-0.5
|
377 |
+
self.dropout = config.attention_dropout
|
378 |
+
|
379 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
380 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
381 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
382 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
383 |
+
|
384 |
+
def forward(
|
385 |
+
self,
|
386 |
+
hidden_states: torch.Tensor,
|
387 |
+
attention_mask: Optional[torch.Tensor] = None,
|
388 |
+
output_attentions: Optional[bool] = False,
|
389 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
390 |
+
"""Input shape: Batch x Time x Channel"""
|
391 |
+
|
392 |
+
batch_size, q_len, _ = hidden_states.size()
|
393 |
+
|
394 |
+
query_states = self.q_proj(hidden_states)
|
395 |
+
key_states = self.k_proj(hidden_states)
|
396 |
+
value_states = self.v_proj(hidden_states)
|
397 |
+
|
398 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
399 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
400 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
401 |
+
|
402 |
+
k_v_seq_len = key_states.shape[-2]
|
403 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
|
404 |
+
|
405 |
+
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
|
406 |
+
raise ValueError(
|
407 |
+
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
|
408 |
+
f" {attn_weights.size()}"
|
409 |
+
)
|
410 |
+
|
411 |
+
if attention_mask is not None:
|
412 |
+
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
|
413 |
+
raise ValueError(
|
414 |
+
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
|
415 |
+
)
|
416 |
+
attn_weights = attn_weights + attention_mask
|
417 |
+
|
418 |
+
# upcast attention to fp32
|
419 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
420 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
421 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
422 |
+
|
423 |
+
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
|
424 |
+
raise ValueError(
|
425 |
+
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
|
426 |
+
f" {attn_output.size()}"
|
427 |
+
)
|
428 |
+
|
429 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
430 |
+
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
|
431 |
+
|
432 |
+
attn_output = self.out_proj(attn_output)
|
433 |
+
|
434 |
+
return attn_output, attn_weights
|
435 |
+
|
436 |
+
|
437 |
+
class SiglipFlashAttention2(SiglipAttention):
|
438 |
+
"""
|
439 |
+
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
|
440 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
441 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
442 |
+
"""
|
443 |
+
|
444 |
+
def __init__(self, *args, **kwargs):
|
445 |
+
super().__init__(*args, **kwargs)
|
446 |
+
self.is_causal = False # Hack to make sure we don't use a causal mask
|
447 |
+
|
448 |
+
def forward(
|
449 |
+
self,
|
450 |
+
hidden_states: torch.Tensor,
|
451 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
452 |
+
position_ids: Optional[torch.LongTensor] = None,
|
453 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
454 |
+
output_attentions: bool = False,
|
455 |
+
use_cache: bool = False,
|
456 |
+
**kwargs,
|
457 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
458 |
+
output_attentions = False
|
459 |
+
|
460 |
+
bsz, q_len, _ = hidden_states.size()
|
461 |
+
|
462 |
+
query_states = self.q_proj(hidden_states)
|
463 |
+
key_states = self.k_proj(hidden_states)
|
464 |
+
value_states = self.v_proj(hidden_states)
|
465 |
+
|
466 |
+
# Flash attention requires the input to have the shape
|
467 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
468 |
+
# therefore we just need to keep the original shape
|
469 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
470 |
+
key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
471 |
+
value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
472 |
+
|
473 |
+
kv_seq_len = key_states.shape[-2]
|
474 |
+
if past_key_value is not None:
|
475 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
476 |
+
# cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
477 |
+
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
478 |
+
|
479 |
+
# if past_key_value is not None:
|
480 |
+
# cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
481 |
+
# key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
482 |
+
|
483 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
484 |
+
# to be able to avoid many of these transpose/reshape/view.
|
485 |
+
query_states = query_states.transpose(1, 2)
|
486 |
+
key_states = key_states.transpose(1, 2)
|
487 |
+
value_states = value_states.transpose(1, 2)
|
488 |
+
|
489 |
+
dropout_rate = self.dropout if self.training else 0.0
|
490 |
+
|
491 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
492 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
493 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
494 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
495 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
496 |
+
|
497 |
+
input_dtype = query_states.dtype
|
498 |
+
if input_dtype == torch.float32:
|
499 |
+
if torch.is_autocast_enabled():
|
500 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
501 |
+
# Handle the case where the model is quantized
|
502 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
503 |
+
target_dtype = self.config._pre_quantization_dtype
|
504 |
+
else:
|
505 |
+
target_dtype = self.q_proj.weight.dtype
|
506 |
+
|
507 |
+
logger.warning_once(
|
508 |
+
"The input hidden states seems to be silently casted in float32, this might be related to the fact"
|
509 |
+
" you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
510 |
+
f" {target_dtype}."
|
511 |
+
)
|
512 |
+
|
513 |
+
query_states = query_states.to(target_dtype)
|
514 |
+
key_states = key_states.to(target_dtype)
|
515 |
+
value_states = value_states.to(target_dtype)
|
516 |
+
|
517 |
+
attn_output = self._flash_attention_forward(
|
518 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
519 |
+
)
|
520 |
+
|
521 |
+
attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
|
522 |
+
attn_output = self.out_proj(attn_output)
|
523 |
+
|
524 |
+
if not output_attentions:
|
525 |
+
attn_weights = None
|
526 |
+
|
527 |
+
return attn_output, attn_weights
|
528 |
+
|
529 |
+
def _flash_attention_forward(
|
530 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
531 |
+
):
|
532 |
+
"""
|
533 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
534 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
535 |
+
Args:
|
536 |
+
query_states (`torch.Tensor`):
|
537 |
+
Input query states to be passed to Flash Attention API
|
538 |
+
key_states (`torch.Tensor`):
|
539 |
+
Input key states to be passed to Flash Attention API
|
540 |
+
value_states (`torch.Tensor`):
|
541 |
+
Input value states to be passed to Flash Attention API
|
542 |
+
attention_mask (`torch.Tensor`):
|
543 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
544 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
545 |
+
dropout (`int`, *optional*):
|
546 |
+
Attention dropout
|
547 |
+
softmax_scale (`float`, *optional*):
|
548 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
549 |
+
"""
|
550 |
+
|
551 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
552 |
+
causal = self.is_causal and query_length != 1
|
553 |
+
|
554 |
+
# Contains at least one padding token in the sequence
|
555 |
+
if attention_mask is not None:
|
556 |
+
batch_size = query_states.shape[0]
|
557 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
558 |
+
query_states, key_states, value_states, attention_mask, query_length
|
559 |
+
)
|
560 |
+
|
561 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
562 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
563 |
+
|
564 |
+
attn_output_unpad = flash_attn_varlen_func(
|
565 |
+
query_states,
|
566 |
+
key_states,
|
567 |
+
value_states,
|
568 |
+
cu_seqlens_q=cu_seqlens_q,
|
569 |
+
cu_seqlens_k=cu_seqlens_k,
|
570 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
571 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
572 |
+
dropout_p=dropout,
|
573 |
+
softmax_scale=softmax_scale,
|
574 |
+
causal=causal,
|
575 |
+
)
|
576 |
+
|
577 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
578 |
+
else:
|
579 |
+
attn_output = flash_attn_func(
|
580 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
581 |
+
)
|
582 |
+
|
583 |
+
return attn_output
|
584 |
+
|
585 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
586 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
587 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
588 |
+
|
589 |
+
key_layer = index_first_axis(
|
590 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
591 |
+
)
|
592 |
+
value_layer = index_first_axis(
|
593 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
594 |
+
)
|
595 |
+
if query_length == kv_seq_len:
|
596 |
+
query_layer = index_first_axis(
|
597 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
598 |
+
)
|
599 |
+
cu_seqlens_q = cu_seqlens_k
|
600 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
601 |
+
indices_q = indices_k
|
602 |
+
elif query_length == 1:
|
603 |
+
max_seqlen_in_batch_q = 1
|
604 |
+
cu_seqlens_q = torch.arange(
|
605 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
606 |
+
) # There is a memcpy here, that is very bad.
|
607 |
+
indices_q = cu_seqlens_q[:-1]
|
608 |
+
query_layer = query_layer.squeeze(1)
|
609 |
+
else:
|
610 |
+
# The -q_len: slice assumes left padding.
|
611 |
+
attention_mask = attention_mask[:, -query_length:]
|
612 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
613 |
+
|
614 |
+
return (
|
615 |
+
query_layer,
|
616 |
+
key_layer,
|
617 |
+
value_layer,
|
618 |
+
indices_q,
|
619 |
+
(cu_seqlens_q, cu_seqlens_k),
|
620 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
621 |
+
)
|
622 |
+
|
623 |
+
|
624 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
|
625 |
+
class SiglipMLP(nn.Module):
|
626 |
+
def __init__(self, config):
|
627 |
+
super().__init__()
|
628 |
+
self.config = config
|
629 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
630 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
631 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
632 |
+
|
633 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
634 |
+
hidden_states = self.fc1(hidden_states)
|
635 |
+
hidden_states = self.activation_fn(hidden_states)
|
636 |
+
hidden_states = self.fc2(hidden_states)
|
637 |
+
return hidden_states
|
638 |
+
|
639 |
+
|
640 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
|
641 |
+
class SiglipEncoderLayer(nn.Module):
|
642 |
+
def __init__(self, config: SiglipConfig):
|
643 |
+
super().__init__()
|
644 |
+
self.embed_dim = config.hidden_size
|
645 |
+
self.self_attn = (
|
646 |
+
SiglipAttention(config)
|
647 |
+
if not getattr(config, "_flash_attn_2_enabled", False)
|
648 |
+
else SiglipFlashAttention2(config)
|
649 |
+
)
|
650 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
651 |
+
self.mlp = SiglipMLP(config)
|
652 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
653 |
+
|
654 |
+
def forward(
|
655 |
+
self,
|
656 |
+
hidden_states: torch.Tensor,
|
657 |
+
attention_mask: torch.Tensor,
|
658 |
+
output_attentions: Optional[bool] = False,
|
659 |
+
) -> Tuple[torch.FloatTensor]:
|
660 |
+
"""
|
661 |
+
Args:
|
662 |
+
hidden_states (`torch.FloatTensor`):
|
663 |
+
Input to the layer of shape `(batch, seq_len, embed_dim)`.
|
664 |
+
attention_mask (`torch.FloatTensor`):
|
665 |
+
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
|
666 |
+
output_attentions (`bool`, *optional*, defaults to `False`):
|
667 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
668 |
+
returned tensors for more detail.
|
669 |
+
"""
|
670 |
+
residual = hidden_states
|
671 |
+
|
672 |
+
hidden_states = self.layer_norm1(hidden_states)
|
673 |
+
hidden_states, attn_weights = self.self_attn(
|
674 |
+
hidden_states=hidden_states,
|
675 |
+
attention_mask=attention_mask,
|
676 |
+
output_attentions=output_attentions,
|
677 |
+
)
|
678 |
+
hidden_states = residual + hidden_states
|
679 |
+
|
680 |
+
residual = hidden_states
|
681 |
+
hidden_states = self.layer_norm2(hidden_states)
|
682 |
+
hidden_states = self.mlp(hidden_states)
|
683 |
+
hidden_states = residual + hidden_states
|
684 |
+
|
685 |
+
outputs = (hidden_states,)
|
686 |
+
|
687 |
+
if output_attentions:
|
688 |
+
outputs += (attn_weights,)
|
689 |
+
|
690 |
+
return outputs
|
691 |
+
|
692 |
+
|
693 |
+
class SiglipPreTrainedModel(PreTrainedModel):
|
694 |
+
"""
|
695 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
696 |
+
models.
|
697 |
+
"""
|
698 |
+
|
699 |
+
config_class = SiglipConfig
|
700 |
+
base_model_prefix = "siglip"
|
701 |
+
supports_gradient_checkpointing = True
|
702 |
+
|
703 |
+
def _init_weights(self, module):
|
704 |
+
"""Initialize the weights"""
|
705 |
+
|
706 |
+
if isinstance(module, SiglipVisionEmbeddings):
|
707 |
+
width = (
|
708 |
+
self.config.vision_config.hidden_size
|
709 |
+
if isinstance(self.config, SiglipConfig)
|
710 |
+
else self.config.hidden_size
|
711 |
+
)
|
712 |
+
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
|
713 |
+
elif isinstance(module, nn.Embedding):
|
714 |
+
default_flax_embed_init(module.weight)
|
715 |
+
elif isinstance(module, SiglipAttention):
|
716 |
+
nn.init.normal_(module.q_proj.weight)
|
717 |
+
nn.init.normal_(module.k_proj.weight)
|
718 |
+
nn.init.normal_(module.v_proj.weight)
|
719 |
+
nn.init.normal_(module.out_proj.weight)
|
720 |
+
nn.init.zeros_(module.q_proj.bias)
|
721 |
+
nn.init.zeros_(module.k_proj.bias)
|
722 |
+
nn.init.zeros_(module.v_proj.bias)
|
723 |
+
nn.init.zeros_(module.out_proj.bias)
|
724 |
+
elif isinstance(module, SiglipMLP):
|
725 |
+
nn.init.normal_(module.fc1.weight)
|
726 |
+
nn.init.normal_(module.fc2.weight)
|
727 |
+
nn.init.normal_(module.fc1.bias, std=1e-6)
|
728 |
+
nn.init.normal_(module.fc2.bias, std=1e-6)
|
729 |
+
elif isinstance(module, SiglipMultiheadAttentionPoolingHead):
|
730 |
+
nn.init.normal_(module.probe.data)
|
731 |
+
nn.init.normal_(module.attention.in_proj_weight.data)
|
732 |
+
nn.init.zeros_(module.attention.in_proj_bias.data)
|
733 |
+
elif isinstance(module, SiglipModel):
|
734 |
+
logit_scale_init = torch.tensor(0.0)
|
735 |
+
module.logit_scale.data.fill_(logit_scale_init)
|
736 |
+
module.logit_bias.data.zero_()
|
737 |
+
elif isinstance(module, (nn.Linear, nn.Conv2d)):
|
738 |
+
lecun_normal_(module.weight)
|
739 |
+
if module.bias is not None:
|
740 |
+
nn.init.zeros_(module.bias)
|
741 |
+
elif isinstance(module, nn.LayerNorm):
|
742 |
+
module.bias.data.zero_()
|
743 |
+
module.weight.data.fill_(1.0)
|
744 |
+
|
745 |
+
|
746 |
+
SIGLIP_START_DOCSTRING = r"""
|
747 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
748 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
749 |
+
etc.)
|
750 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
751 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
752 |
+
and behavior.
|
753 |
+
Parameters:
|
754 |
+
config ([`SiglipConfig`]): Model configuration class with all the parameters of the model.
|
755 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
756 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
757 |
+
"""
|
758 |
+
|
759 |
+
SIGLIP_TEXT_INPUTS_DOCSTRING = r"""
|
760 |
+
Args:
|
761 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
762 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
763 |
+
it.
|
764 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
765 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
766 |
+
[What are input IDs?](../glossary#input-ids)
|
767 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
768 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
769 |
+
- 1 for tokens that are **not masked**,
|
770 |
+
- 0 for tokens that are **masked**.
|
771 |
+
[What are attention masks?](../glossary#attention-mask)
|
772 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
773 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
774 |
+
config.max_position_embeddings - 1]`.
|
775 |
+
[What are position IDs?](../glossary#position-ids)
|
776 |
+
output_attentions (`bool`, *optional*):
|
777 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
778 |
+
tensors for more detail.
|
779 |
+
output_hidden_states (`bool`, *optional*):
|
780 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
781 |
+
more detail.
|
782 |
+
return_dict (`bool`, *optional*):
|
783 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
784 |
+
"""
|
785 |
+
|
786 |
+
SIGLIP_VISION_INPUTS_DOCSTRING = r"""
|
787 |
+
Args:
|
788 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
789 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
790 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
791 |
+
output_attentions (`bool`, *optional*):
|
792 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
793 |
+
tensors for more detail.
|
794 |
+
output_hidden_states (`bool`, *optional*):
|
795 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
796 |
+
more detail.
|
797 |
+
return_dict (`bool`, *optional*):
|
798 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
799 |
+
"""
|
800 |
+
|
801 |
+
SIGLIP_INPUTS_DOCSTRING = r"""
|
802 |
+
Args:
|
803 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
804 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
805 |
+
it.
|
806 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
807 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
808 |
+
[What are input IDs?](../glossary#input-ids)
|
809 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
810 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
811 |
+
- 1 for tokens that are **not masked**,
|
812 |
+
- 0 for tokens that are **masked**.
|
813 |
+
[What are attention masks?](../glossary#attention-mask)
|
814 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
815 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
816 |
+
config.max_position_embeddings - 1]`.
|
817 |
+
[What are position IDs?](../glossary#position-ids)
|
818 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
819 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
820 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
821 |
+
return_loss (`bool`, *optional*):
|
822 |
+
Whether or not to return the contrastive loss.
|
823 |
+
output_attentions (`bool`, *optional*):
|
824 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
825 |
+
tensors for more detail.
|
826 |
+
output_hidden_states (`bool`, *optional*):
|
827 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
828 |
+
more detail.
|
829 |
+
return_dict (`bool`, *optional*):
|
830 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
831 |
+
"""
|
832 |
+
|
833 |
+
|
834 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
|
835 |
+
class SiglipEncoder(nn.Module):
|
836 |
+
"""
|
837 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
838 |
+
[`SiglipEncoderLayer`].
|
839 |
+
Args:
|
840 |
+
config: SiglipConfig
|
841 |
+
"""
|
842 |
+
|
843 |
+
def __init__(self, config: SiglipConfig):
|
844 |
+
super().__init__()
|
845 |
+
self.config = config
|
846 |
+
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
847 |
+
self.gradient_checkpointing = False
|
848 |
+
|
849 |
+
# Ignore copy
|
850 |
+
def forward(
|
851 |
+
self,
|
852 |
+
inputs_embeds,
|
853 |
+
attention_mask: Optional[torch.Tensor] = None,
|
854 |
+
output_attentions: Optional[bool] = None,
|
855 |
+
output_hidden_states: Optional[bool] = None,
|
856 |
+
return_dict: Optional[bool] = None,
|
857 |
+
) -> Union[Tuple, BaseModelOutput]:
|
858 |
+
r"""
|
859 |
+
Args:
|
860 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
861 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
862 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
863 |
+
than the model's internal embedding lookup matrix.
|
864 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
865 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
866 |
+
- 1 for tokens that are **not masked**,
|
867 |
+
- 0 for tokens that are **masked**.
|
868 |
+
[What are attention masks?](../glossary#attention-mask)
|
869 |
+
output_attentions (`bool`, *optional*):
|
870 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
871 |
+
returned tensors for more detail.
|
872 |
+
output_hidden_states (`bool`, *optional*):
|
873 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
874 |
+
for more detail.
|
875 |
+
return_dict (`bool`, *optional*):
|
876 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
877 |
+
"""
|
878 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
879 |
+
output_hidden_states = (
|
880 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
881 |
+
)
|
882 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
883 |
+
|
884 |
+
encoder_states = () if output_hidden_states else None
|
885 |
+
all_attentions = () if output_attentions else None
|
886 |
+
|
887 |
+
hidden_states = inputs_embeds
|
888 |
+
for encoder_layer in self.layers:
|
889 |
+
if output_hidden_states:
|
890 |
+
encoder_states = encoder_states + (hidden_states,)
|
891 |
+
if self.gradient_checkpointing and self.training:
|
892 |
+
layer_outputs = self._gradient_checkpointing_func(
|
893 |
+
encoder_layer.__call__,
|
894 |
+
hidden_states,
|
895 |
+
attention_mask,
|
896 |
+
output_attentions,
|
897 |
+
)
|
898 |
+
else:
|
899 |
+
layer_outputs = encoder_layer(
|
900 |
+
hidden_states,
|
901 |
+
attention_mask,
|
902 |
+
output_attentions=output_attentions,
|
903 |
+
)
|
904 |
+
|
905 |
+
hidden_states = layer_outputs[0]
|
906 |
+
|
907 |
+
if output_attentions:
|
908 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
909 |
+
|
910 |
+
if output_hidden_states:
|
911 |
+
encoder_states = encoder_states + (hidden_states,)
|
912 |
+
|
913 |
+
if not return_dict:
|
914 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
915 |
+
return BaseModelOutput(
|
916 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
917 |
+
)
|
918 |
+
|
919 |
+
|
920 |
+
class SiglipTextTransformer(nn.Module):
|
921 |
+
def __init__(self, config: SiglipTextConfig):
|
922 |
+
super().__init__()
|
923 |
+
self.config = config
|
924 |
+
embed_dim = config.hidden_size
|
925 |
+
self.embeddings = SiglipTextEmbeddings(config)
|
926 |
+
self.encoder = SiglipEncoder(config)
|
927 |
+
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
928 |
+
|
929 |
+
self.head = nn.Linear(embed_dim, embed_dim)
|
930 |
+
|
931 |
+
@add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
932 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig)
|
933 |
+
def forward(
|
934 |
+
self,
|
935 |
+
input_ids: Optional[torch.Tensor] = None,
|
936 |
+
attention_mask: Optional[torch.Tensor] = None,
|
937 |
+
position_ids: Optional[torch.Tensor] = None,
|
938 |
+
output_attentions: Optional[bool] = None,
|
939 |
+
output_hidden_states: Optional[bool] = None,
|
940 |
+
return_dict: Optional[bool] = None,
|
941 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
942 |
+
r"""
|
943 |
+
Returns:
|
944 |
+
"""
|
945 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
946 |
+
output_hidden_states = (
|
947 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
948 |
+
)
|
949 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
950 |
+
|
951 |
+
if input_ids is None:
|
952 |
+
raise ValueError("You have to specify input_ids")
|
953 |
+
|
954 |
+
input_shape = input_ids.size()
|
955 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
956 |
+
|
957 |
+
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
|
958 |
+
|
959 |
+
# note: SigLIP's text model does not use a causal mask, unlike the original CLIP model.
|
960 |
+
# expand attention_mask
|
961 |
+
if attention_mask is not None:
|
962 |
+
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
|
963 |
+
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
|
964 |
+
|
965 |
+
encoder_outputs = self.encoder(
|
966 |
+
inputs_embeds=hidden_states,
|
967 |
+
attention_mask=attention_mask,
|
968 |
+
output_attentions=output_attentions,
|
969 |
+
output_hidden_states=output_hidden_states,
|
970 |
+
return_dict=return_dict,
|
971 |
+
)
|
972 |
+
|
973 |
+
last_hidden_state = encoder_outputs[0]
|
974 |
+
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
975 |
+
|
976 |
+
# Assuming "sticky" EOS tokenization, last token is always EOS.
|
977 |
+
pooled_output = last_hidden_state[:, -1, :]
|
978 |
+
pooled_output = self.head(pooled_output)
|
979 |
+
|
980 |
+
if not return_dict:
|
981 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
982 |
+
|
983 |
+
return BaseModelOutputWithPooling(
|
984 |
+
last_hidden_state=last_hidden_state,
|
985 |
+
pooler_output=pooled_output,
|
986 |
+
hidden_states=encoder_outputs.hidden_states,
|
987 |
+
attentions=encoder_outputs.attentions,
|
988 |
+
)
|
989 |
+
|
990 |
+
|
991 |
+
@add_start_docstrings(
|
992 |
+
"""The text model from SigLIP without any head or projection on top.""",
|
993 |
+
SIGLIP_START_DOCSTRING,
|
994 |
+
)
|
995 |
+
class SiglipTextModel(SiglipPreTrainedModel):
|
996 |
+
config_class = SiglipTextConfig
|
997 |
+
|
998 |
+
_no_split_modules = ["SiglipTextEmbeddings", "SiglipEncoderLayer"]
|
999 |
+
|
1000 |
+
def __init__(self, config: SiglipTextConfig):
|
1001 |
+
super().__init__(config)
|
1002 |
+
self.text_model = SiglipTextTransformer(config)
|
1003 |
+
# Initialize weights and apply final processing
|
1004 |
+
self.post_init()
|
1005 |
+
|
1006 |
+
def get_input_embeddings(self) -> nn.Module:
|
1007 |
+
return self.text_model.embeddings.token_embedding
|
1008 |
+
|
1009 |
+
def set_input_embeddings(self, value):
|
1010 |
+
self.text_model.embeddings.token_embedding = value
|
1011 |
+
|
1012 |
+
@add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
1013 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig)
|
1014 |
+
def forward(
|
1015 |
+
self,
|
1016 |
+
input_ids: Optional[torch.Tensor] = None,
|
1017 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1018 |
+
position_ids: Optional[torch.Tensor] = None,
|
1019 |
+
output_attentions: Optional[bool] = None,
|
1020 |
+
output_hidden_states: Optional[bool] = None,
|
1021 |
+
return_dict: Optional[bool] = None,
|
1022 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
1023 |
+
r"""
|
1024 |
+
Returns:
|
1025 |
+
Examples:
|
1026 |
+
```python
|
1027 |
+
>>> from transformers import AutoTokenizer, SiglipTextModel
|
1028 |
+
>>> model = SiglipTextModel.from_pretrained("google/siglip-base-patch16-224")
|
1029 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
1030 |
+
>>> # important: make sure to set padding="max_length" as that's how the model was trained
|
1031 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt")
|
1032 |
+
>>> outputs = model(**inputs)
|
1033 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
1034 |
+
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
|
1035 |
+
```"""
|
1036 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1037 |
+
|
1038 |
+
return self.text_model(
|
1039 |
+
input_ids=input_ids,
|
1040 |
+
attention_mask=attention_mask,
|
1041 |
+
position_ids=position_ids,
|
1042 |
+
output_attentions=output_attentions,
|
1043 |
+
output_hidden_states=output_hidden_states,
|
1044 |
+
return_dict=return_dict,
|
1045 |
+
)
|
1046 |
+
|
1047 |
+
|
1048 |
+
class SiglipVisionTransformer(nn.Module):
|
1049 |
+
def __init__(self, config: SiglipVisionConfig):
|
1050 |
+
super().__init__()
|
1051 |
+
self.config = config
|
1052 |
+
embed_dim = config.hidden_size
|
1053 |
+
|
1054 |
+
self.embeddings = SiglipVisionEmbeddings(config)
|
1055 |
+
self.encoder = SiglipEncoder(config)
|
1056 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
1057 |
+
self.head = SiglipMultiheadAttentionPoolingHead(config)
|
1058 |
+
|
1059 |
+
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
1060 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig)
|
1061 |
+
def forward(
|
1062 |
+
self,
|
1063 |
+
pixel_values,
|
1064 |
+
patch_attention_mask: Optional[torch.BoolTensor] = None,
|
1065 |
+
output_attentions: Optional[bool] = None,
|
1066 |
+
output_hidden_states: Optional[bool] = None,
|
1067 |
+
return_dict: Optional[bool] = None,
|
1068 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
1069 |
+
r"""
|
1070 |
+
Returns:
|
1071 |
+
"""
|
1072 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1073 |
+
output_hidden_states = (
|
1074 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1075 |
+
)
|
1076 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1077 |
+
|
1078 |
+
batch_size = pixel_values.size(0)
|
1079 |
+
if patch_attention_mask is None:
|
1080 |
+
patch_attention_mask = torch.ones(
|
1081 |
+
size=(
|
1082 |
+
batch_size,
|
1083 |
+
pixel_values.size(2) // self.config.patch_size,
|
1084 |
+
pixel_values.size(3) // self.config.patch_size,
|
1085 |
+
),
|
1086 |
+
dtype=torch.bool,
|
1087 |
+
device=pixel_values.device,
|
1088 |
+
)
|
1089 |
+
|
1090 |
+
hidden_states = self.embeddings(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask)
|
1091 |
+
|
1092 |
+
patch_attention_mask = patch_attention_mask.view(batch_size, -1)
|
1093 |
+
# The call to `_upad_input` in `_flash_attention_forward` is expensive
|
1094 |
+
# So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence),
|
1095 |
+
# avoiding passing the attention_mask, which is equivalent to attending to the full sequence
|
1096 |
+
if not torch.any(~patch_attention_mask):
|
1097 |
+
attention_mask=None
|
1098 |
+
else:
|
1099 |
+
attention_mask = (
|
1100 |
+
_prepare_4d_attention_mask(patch_attention_mask, hidden_states.dtype)
|
1101 |
+
if not self.config._flash_attn_2_enabled
|
1102 |
+
else patch_attention_mask
|
1103 |
+
)
|
1104 |
+
|
1105 |
+
encoder_outputs = self.encoder(
|
1106 |
+
inputs_embeds=hidden_states,
|
1107 |
+
attention_mask=attention_mask,
|
1108 |
+
output_attentions=output_attentions,
|
1109 |
+
output_hidden_states=output_hidden_states,
|
1110 |
+
return_dict=return_dict,
|
1111 |
+
)
|
1112 |
+
|
1113 |
+
last_hidden_state = encoder_outputs[0]
|
1114 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
1115 |
+
|
1116 |
+
pooled_output = self.head(
|
1117 |
+
hidden_state=last_hidden_state,
|
1118 |
+
attention_mask=patch_attention_mask,
|
1119 |
+
)
|
1120 |
+
|
1121 |
+
if not return_dict:
|
1122 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
1123 |
+
|
1124 |
+
return BaseModelOutputWithPooling(
|
1125 |
+
last_hidden_state=last_hidden_state,
|
1126 |
+
pooler_output=pooled_output,
|
1127 |
+
hidden_states=encoder_outputs.hidden_states,
|
1128 |
+
attentions=encoder_outputs.attentions,
|
1129 |
+
)
|
1130 |
+
|
1131 |
+
|
1132 |
+
class SiglipMultiheadAttentionPoolingHead(nn.Module):
|
1133 |
+
"""Multihead Attention Pooling."""
|
1134 |
+
|
1135 |
+
def __init__(self, config: SiglipVisionConfig):
|
1136 |
+
super().__init__()
|
1137 |
+
|
1138 |
+
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
|
1139 |
+
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
|
1140 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1141 |
+
self.mlp = SiglipMLP(config)
|
1142 |
+
|
1143 |
+
def forward(self, hidden_state, attention_mask):
|
1144 |
+
batch_size = hidden_state.shape[0]
|
1145 |
+
probe = self.probe.repeat(batch_size, 1, 1)
|
1146 |
+
|
1147 |
+
hidden_state = self.attention(
|
1148 |
+
query=probe, key=hidden_state, value=hidden_state, key_padding_mask=~attention_mask
|
1149 |
+
)[0]
|
1150 |
+
|
1151 |
+
residual = hidden_state
|
1152 |
+
hidden_state = self.layernorm(hidden_state)
|
1153 |
+
hidden_state = residual + self.mlp(hidden_state)
|
1154 |
+
|
1155 |
+
return hidden_state[:, 0]
|
1156 |
+
|
1157 |
+
|
1158 |
+
@add_start_docstrings(
|
1159 |
+
"""The vision model from SigLIP without any head or projection on top.""",
|
1160 |
+
SIGLIP_START_DOCSTRING,
|
1161 |
+
)
|
1162 |
+
class SiglipVisionModel(SiglipPreTrainedModel):
|
1163 |
+
config_class = SiglipVisionConfig
|
1164 |
+
main_input_name = "pixel_values"
|
1165 |
+
|
1166 |
+
def __init__(self, config: SiglipVisionConfig):
|
1167 |
+
super().__init__(config)
|
1168 |
+
|
1169 |
+
self.vision_model = SiglipVisionTransformer(config)
|
1170 |
+
|
1171 |
+
# Initialize weights and apply final processing
|
1172 |
+
self.post_init()
|
1173 |
+
|
1174 |
+
def get_input_embeddings(self) -> nn.Module:
|
1175 |
+
return self.vision_model.embeddings.patch_embedding
|
1176 |
+
|
1177 |
+
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
1178 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig)
|
1179 |
+
def forward(
|
1180 |
+
self,
|
1181 |
+
pixel_values,
|
1182 |
+
patch_attention_mask: Optional[torch.BoolTensor] = None,
|
1183 |
+
output_attentions: Optional[bool] = None,
|
1184 |
+
output_hidden_states: Optional[bool] = None,
|
1185 |
+
return_dict: Optional[bool] = None,
|
1186 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
1187 |
+
r"""
|
1188 |
+
Returns:
|
1189 |
+
Examples:
|
1190 |
+
```python
|
1191 |
+
>>> from PIL import Image
|
1192 |
+
>>> import requests
|
1193 |
+
>>> from transformers import AutoProcessor, SiglipVisionModel
|
1194 |
+
>>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224")
|
1195 |
+
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
1196 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1197 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1198 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1199 |
+
>>> outputs = model(**inputs)
|
1200 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
1201 |
+
>>> pooled_output = outputs.pooler_output # pooled features
|
1202 |
+
```"""
|
1203 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1204 |
+
|
1205 |
+
return self.vision_model(
|
1206 |
+
pixel_values=pixel_values,
|
1207 |
+
patch_attention_mask=patch_attention_mask,
|
1208 |
+
output_attentions=output_attentions,
|
1209 |
+
output_hidden_states=output_hidden_states,
|
1210 |
+
return_dict=return_dict,
|
1211 |
+
)
|
1212 |
+
|
1213 |
+
|
1214 |
+
@add_start_docstrings(SIGLIP_START_DOCSTRING)
|
1215 |
+
class SiglipModel(SiglipPreTrainedModel):
|
1216 |
+
config_class = SiglipConfig
|
1217 |
+
|
1218 |
+
def __init__(self, config: SiglipConfig):
|
1219 |
+
super().__init__(config)
|
1220 |
+
|
1221 |
+
if not isinstance(config.text_config, SiglipTextConfig):
|
1222 |
+
raise ValueError(
|
1223 |
+
"config.text_config is expected to be of type SiglipTextConfig but is of type"
|
1224 |
+
f" {type(config.text_config)}."
|
1225 |
+
)
|
1226 |
+
|
1227 |
+
if not isinstance(config.vision_config, SiglipVisionConfig):
|
1228 |
+
raise ValueError(
|
1229 |
+
"config.vision_config is expected to be of type SiglipVisionConfig but is of type"
|
1230 |
+
f" {type(config.vision_config)}."
|
1231 |
+
)
|
1232 |
+
|
1233 |
+
text_config = config.text_config
|
1234 |
+
vision_config = config.vision_config
|
1235 |
+
|
1236 |
+
self.text_model = SiglipTextTransformer(text_config)
|
1237 |
+
self.vision_model = SiglipVisionTransformer(vision_config)
|
1238 |
+
|
1239 |
+
self.logit_scale = nn.Parameter(torch.randn(1))
|
1240 |
+
self.logit_bias = nn.Parameter(torch.randn(1))
|
1241 |
+
|
1242 |
+
# Initialize weights and apply final processing
|
1243 |
+
self.post_init()
|
1244 |
+
|
1245 |
+
@add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
1246 |
+
def get_text_features(
|
1247 |
+
self,
|
1248 |
+
input_ids: Optional[torch.Tensor] = None,
|
1249 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1250 |
+
position_ids: Optional[torch.Tensor] = None,
|
1251 |
+
output_attentions: Optional[bool] = None,
|
1252 |
+
output_hidden_states: Optional[bool] = None,
|
1253 |
+
return_dict: Optional[bool] = None,
|
1254 |
+
) -> torch.FloatTensor:
|
1255 |
+
r"""
|
1256 |
+
Returns:
|
1257 |
+
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
1258 |
+
applying the projection layer to the pooled output of [`SiglipTextModel`].
|
1259 |
+
Examples:
|
1260 |
+
```python
|
1261 |
+
>>> from transformers import AutoTokenizer, AutoModel
|
1262 |
+
>>> import torch
|
1263 |
+
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
1264 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
1265 |
+
>>> # important: make sure to set padding="max_length" as that's how the model was trained
|
1266 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt")
|
1267 |
+
>>> with torch.no_grad():
|
1268 |
+
... text_features = model.get_text_features(**inputs)
|
1269 |
+
```"""
|
1270 |
+
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1271 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1272 |
+
output_hidden_states = (
|
1273 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1274 |
+
)
|
1275 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1276 |
+
|
1277 |
+
text_outputs = self.text_model(
|
1278 |
+
input_ids=input_ids,
|
1279 |
+
attention_mask=attention_mask,
|
1280 |
+
position_ids=position_ids,
|
1281 |
+
output_attentions=output_attentions,
|
1282 |
+
output_hidden_states=output_hidden_states,
|
1283 |
+
return_dict=return_dict,
|
1284 |
+
)
|
1285 |
+
|
1286 |
+
pooled_output = text_outputs[1]
|
1287 |
+
|
1288 |
+
return pooled_output
|
1289 |
+
|
1290 |
+
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
1291 |
+
def get_image_features(
|
1292 |
+
self,
|
1293 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1294 |
+
output_attentions: Optional[bool] = None,
|
1295 |
+
output_hidden_states: Optional[bool] = None,
|
1296 |
+
return_dict: Optional[bool] = None,
|
1297 |
+
) -> torch.FloatTensor:
|
1298 |
+
r"""
|
1299 |
+
Returns:
|
1300 |
+
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
1301 |
+
applying the projection layer to the pooled output of [`SiglipVisionModel`].
|
1302 |
+
Examples:
|
1303 |
+
```python
|
1304 |
+
>>> from PIL import Image
|
1305 |
+
>>> import requests
|
1306 |
+
>>> from transformers import AutoProcessor, AutoModel
|
1307 |
+
>>> import torch
|
1308 |
+
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
1309 |
+
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
1310 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1311 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1312 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1313 |
+
>>> with torch.no_grad():
|
1314 |
+
... image_features = model.get_image_features(**inputs)
|
1315 |
+
```"""
|
1316 |
+
# Use SiglipModel's config for some fields (if specified) instead of those of vision & text components.
|
1317 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1318 |
+
output_hidden_states = (
|
1319 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1320 |
+
)
|
1321 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1322 |
+
|
1323 |
+
vision_outputs = self.vision_model(
|
1324 |
+
pixel_values=pixel_values,
|
1325 |
+
output_attentions=output_attentions,
|
1326 |
+
output_hidden_states=output_hidden_states,
|
1327 |
+
return_dict=return_dict,
|
1328 |
+
)
|
1329 |
+
|
1330 |
+
pooled_output = vision_outputs[1]
|
1331 |
+
|
1332 |
+
return pooled_output
|
1333 |
+
|
1334 |
+
@add_start_docstrings_to_model_forward(SIGLIP_INPUTS_DOCSTRING)
|
1335 |
+
@replace_return_docstrings(output_type=SiglipOutput, config_class=SiglipConfig)
|
1336 |
+
def forward(
|
1337 |
+
self,
|
1338 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1339 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1340 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1341 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1342 |
+
return_loss: Optional[bool] = None,
|
1343 |
+
output_attentions: Optional[bool] = None,
|
1344 |
+
output_hidden_states: Optional[bool] = None,
|
1345 |
+
return_dict: Optional[bool] = None,
|
1346 |
+
) -> Union[Tuple, SiglipOutput]:
|
1347 |
+
r"""
|
1348 |
+
Returns:
|
1349 |
+
Examples:
|
1350 |
+
```python
|
1351 |
+
>>> from PIL import Image
|
1352 |
+
>>> import requests
|
1353 |
+
>>> from transformers import AutoProcessor, AutoModel
|
1354 |
+
>>> import torch
|
1355 |
+
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
1356 |
+
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
1357 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1358 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1359 |
+
>>> texts = ["a photo of 2 cats", "a photo of 2 dogs"]
|
1360 |
+
>>> # important: we pass `padding=max_length` since the model was trained with this
|
1361 |
+
>>> inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt")
|
1362 |
+
>>> with torch.no_grad():
|
1363 |
+
... outputs = model(**inputs)
|
1364 |
+
>>> logits_per_image = outputs.logits_per_image
|
1365 |
+
>>> probs = torch.sigmoid(logits_per_image) # these are the probabilities
|
1366 |
+
>>> print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'")
|
1367 |
+
31.9% that image 0 is 'a photo of 2 cats'
|
1368 |
+
```"""
|
1369 |
+
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1370 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1371 |
+
output_hidden_states = (
|
1372 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1373 |
+
)
|
1374 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1375 |
+
|
1376 |
+
vision_outputs = self.vision_model(
|
1377 |
+
pixel_values=pixel_values,
|
1378 |
+
output_attentions=output_attentions,
|
1379 |
+
output_hidden_states=output_hidden_states,
|
1380 |
+
return_dict=return_dict,
|
1381 |
+
)
|
1382 |
+
|
1383 |
+
text_outputs = self.text_model(
|
1384 |
+
input_ids=input_ids,
|
1385 |
+
attention_mask=attention_mask,
|
1386 |
+
position_ids=position_ids,
|
1387 |
+
output_attentions=output_attentions,
|
1388 |
+
output_hidden_states=output_hidden_states,
|
1389 |
+
return_dict=return_dict,
|
1390 |
+
)
|
1391 |
+
|
1392 |
+
image_embeds = vision_outputs[1]
|
1393 |
+
text_embeds = text_outputs[1]
|
1394 |
+
|
1395 |
+
# normalized features
|
1396 |
+
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
1397 |
+
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
1398 |
+
|
1399 |
+
# cosine similarity as logits
|
1400 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * self.logit_scale.exp() + self.logit_bias
|
1401 |
+
logits_per_image = logits_per_text.t()
|
1402 |
+
|
1403 |
+
loss = None
|
1404 |
+
if return_loss:
|
1405 |
+
raise NotImplementedError("SigLIP loss to be implemented")
|
1406 |
+
|
1407 |
+
if not return_dict:
|
1408 |
+
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
1409 |
+
return ((loss,) + output) if loss is not None else output
|
1410 |
+
|
1411 |
+
return SiglipOutput(
|
1412 |
+
loss=loss,
|
1413 |
+
logits_per_image=logits_per_image,
|
1414 |
+
logits_per_text=logits_per_text,
|
1415 |
+
text_embeds=text_embeds,
|
1416 |
+
image_embeds=image_embeds,
|
1417 |
+
text_model_output=text_outputs,
|
1418 |
+
vision_model_output=vision_outputs,
|
1419 |
+
)
|
1420 |
+
|
processing_siglip.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Image/Text processor class for SigLIP.
|
17 |
+
"""
|
18 |
+
|
19 |
+
from typing import List, Optional, Union
|
20 |
+
|
21 |
+
from transformers.feature_extraction_utils import BatchFeature
|
22 |
+
from transformers.image_utils import ImageInput
|
23 |
+
from transformers.processing_utils import ProcessorMixin
|
24 |
+
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
25 |
+
from transformers.utils import TensorType
|
26 |
+
|
27 |
+
|
28 |
+
class SiglipProcessor(ProcessorMixin):
|
29 |
+
r"""
|
30 |
+
Constructs a Siglip processor which wraps a Siglip image processor and a Siglip tokenizer into a single processor.
|
31 |
+
|
32 |
+
[`SiglipProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`SiglipTokenizer`]. See the
|
33 |
+
[`~SiglipProcessor.__call__`] and [`~SiglipProcessor.decode`] for more information.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
image_processor ([`SiglipImageProcessor`]):
|
37 |
+
The image processor is a required input.
|
38 |
+
tokenizer ([`SiglipTokenizer`]):
|
39 |
+
The tokenizer is a required input.
|
40 |
+
"""
|
41 |
+
|
42 |
+
attributes = ["image_processor", "tokenizer"]
|
43 |
+
image_processor_class = "SiglipImageProcessor"
|
44 |
+
tokenizer_class = "SiglipTokenizer"
|
45 |
+
|
46 |
+
def __init__(self, image_processor, tokenizer):
|
47 |
+
super().__init__(image_processor, tokenizer)
|
48 |
+
|
49 |
+
def __call__(
|
50 |
+
self,
|
51 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
52 |
+
images: ImageInput = None,
|
53 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
54 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
55 |
+
max_length: int = None,
|
56 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
57 |
+
) -> BatchFeature:
|
58 |
+
"""
|
59 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
60 |
+
and `kwargs` arguments to SiglipTokenizer's [`~SiglipTokenizer.__call__`] if `text` is not `None` to encode
|
61 |
+
the text. To prepare the image(s), this method forwards the `images` argument to
|
62 |
+
SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
63 |
+
of the above two methods for more information.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
67 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
68 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
69 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
70 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
71 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
72 |
+
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
|
73 |
+
number of channels, H and W are image height and width.
|
74 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
75 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
76 |
+
index) among:
|
77 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
78 |
+
sequence if provided).
|
79 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
80 |
+
acceptable input length for the model if that argument is not provided.
|
81 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
82 |
+
lengths).
|
83 |
+
max_length (`int`, *optional*):
|
84 |
+
Maximum length of the returned list and optionally padding length (see above).
|
85 |
+
truncation (`bool`, *optional*):
|
86 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
87 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
88 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
89 |
+
|
90 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
91 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
92 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
93 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
97 |
+
|
98 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
99 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
100 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
101 |
+
`None`).
|
102 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
103 |
+
"""
|
104 |
+
|
105 |
+
if text is None and images is None:
|
106 |
+
raise ValueError("You have to specify either text or images. Both cannot be none.")
|
107 |
+
|
108 |
+
if text is not None:
|
109 |
+
encoding = self.tokenizer(
|
110 |
+
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
|
111 |
+
)
|
112 |
+
|
113 |
+
if images is not None:
|
114 |
+
image_features = self.image_processor(images, return_tensors=return_tensors)
|
115 |
+
|
116 |
+
if text is not None and images is not None:
|
117 |
+
encoding["pixel_values"] = image_features.pixel_values
|
118 |
+
return encoding
|
119 |
+
elif text is not None:
|
120 |
+
return encoding
|
121 |
+
else:
|
122 |
+
return BatchFeature(data=dict(**image_features), tensor_type=return_tensors)
|
123 |
+
|
124 |
+
def decode(self, *args, **kwargs):
|
125 |
+
"""
|
126 |
+
This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
|
127 |
+
the docstring of this method for more information.
|
128 |
+
"""
|
129 |
+
return self.tokenizer.decode(*args, **kwargs)
|
130 |
+
|
131 |
+
def batch_decode(self, *args, **kwargs):
|
132 |
+
"""
|
133 |
+
This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
134 |
+
refer to the docstring of this method for more information.
|
135 |
+
"""
|
136 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
137 |
+
|
138 |
+
@property
|
139 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Siglip, T5->Siglip
|
140 |
+
def model_input_names(self):
|
141 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
142 |
+
image_processor_input_names = self.image_processor.model_input_names
|
143 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
tokenization_siglip.py
ADDED
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Tokenization class for SigLIP model."""
|
16 |
+
|
17 |
+
import os
|
18 |
+
import re
|
19 |
+
import string
|
20 |
+
import warnings
|
21 |
+
from shutil import copyfile
|
22 |
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
|
23 |
+
|
24 |
+
import sentencepiece as spm
|
25 |
+
|
26 |
+
from transformers.convert_slow_tokenizer import import_protobuf
|
27 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
28 |
+
from transformers.tokenization_utils_base import AddedToken
|
29 |
+
|
30 |
+
|
31 |
+
if TYPE_CHECKING:
|
32 |
+
from transformers.tokenization_utils_base import TextInput
|
33 |
+
from transformers.utils import logging, requires_backends
|
34 |
+
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
|
39 |
+
|
40 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
41 |
+
"vocab_file": {
|
42 |
+
"google/siglip-base-patch16-224": "https://huggingface.co/google/siglip-base-patch16-224/resolve/main/spiece.model",
|
43 |
+
}
|
44 |
+
}
|
45 |
+
|
46 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
47 |
+
"google/siglip-base-patch16-224": 256,
|
48 |
+
}
|
49 |
+
|
50 |
+
SPIECE_UNDERLINE = "▁"
|
51 |
+
|
52 |
+
|
53 |
+
class SiglipTokenizer(PreTrainedTokenizer):
|
54 |
+
"""
|
55 |
+
Construct a Siglip tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
56 |
+
|
57 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
58 |
+
this superclass for more information regarding those methods.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
vocab_file (`str`):
|
62 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
63 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
64 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
65 |
+
The end of sequence token.
|
66 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
67 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
68 |
+
token instead.
|
69 |
+
pad_token (`str`, *optional*, defaults to `"</s>"`):
|
70 |
+
The token used for padding, for example when batching sequences of different lengths.
|
71 |
+
additional_special_tokens (`List[str]`, *optional*):
|
72 |
+
Additional special tokens used by the tokenizer.
|
73 |
+
sp_model_kwargs (`dict`, *optional*):
|
74 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
75 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
76 |
+
to set:
|
77 |
+
|
78 |
+
- `enable_sampling`: Enable subword regularization.
|
79 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
80 |
+
|
81 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
82 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
83 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
84 |
+
using forward-filtering-and-backward-sampling algorithm.
|
85 |
+
|
86 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
87 |
+
BPE-dropout.
|
88 |
+
model_max_length (`int`, *optional*, defaults to 64):
|
89 |
+
The maximum length (in number of tokens) for model inputs.
|
90 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
91 |
+
Whether or not to lowercase the input when tokenizing.
|
92 |
+
"""
|
93 |
+
|
94 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
95 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
96 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
97 |
+
model_input_names = ["input_ids", "attention_mask"]
|
98 |
+
|
99 |
+
def __init__(
|
100 |
+
self,
|
101 |
+
vocab_file,
|
102 |
+
eos_token="</s>",
|
103 |
+
unk_token="<unk>",
|
104 |
+
pad_token="</s>",
|
105 |
+
additional_special_tokens=None,
|
106 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
107 |
+
model_max_length=64,
|
108 |
+
do_lower_case=True,
|
109 |
+
**kwargs,
|
110 |
+
) -> None:
|
111 |
+
requires_backends(self, "protobuf")
|
112 |
+
|
113 |
+
pad_token = (
|
114 |
+
AddedToken(pad_token, rstrip=True, lstrip=True, normalized=False, special=True)
|
115 |
+
if isinstance(pad_token, str)
|
116 |
+
else pad_token
|
117 |
+
)
|
118 |
+
unk_token = (
|
119 |
+
AddedToken(unk_token, rstrip=True, lstrip=True, normalized=False, special=True)
|
120 |
+
if isinstance(unk_token, str)
|
121 |
+
else unk_token
|
122 |
+
)
|
123 |
+
eos_token = (
|
124 |
+
AddedToken(eos_token, rstrip=True, lstrip=True, normalized=False, special=True)
|
125 |
+
if isinstance(eos_token, str)
|
126 |
+
else eos_token
|
127 |
+
)
|
128 |
+
|
129 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
130 |
+
|
131 |
+
self.do_lower_case = do_lower_case
|
132 |
+
self.vocab_file = vocab_file
|
133 |
+
|
134 |
+
self.sp_model = self.get_spm_processor()
|
135 |
+
self.vocab_file = vocab_file
|
136 |
+
|
137 |
+
super().__init__(
|
138 |
+
eos_token=eos_token,
|
139 |
+
unk_token=unk_token,
|
140 |
+
pad_token=pad_token,
|
141 |
+
additional_special_tokens=additional_special_tokens,
|
142 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
143 |
+
model_max_length=model_max_length,
|
144 |
+
do_lower_case=do_lower_case,
|
145 |
+
**kwargs,
|
146 |
+
)
|
147 |
+
|
148 |
+
def get_spm_processor(self):
|
149 |
+
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
150 |
+
with open(self.vocab_file, "rb") as f:
|
151 |
+
sp_model = f.read()
|
152 |
+
model_pb2 = import_protobuf()
|
153 |
+
model = model_pb2.ModelProto.FromString(sp_model)
|
154 |
+
normalizer_spec = model_pb2.NormalizerSpec()
|
155 |
+
normalizer_spec.add_dummy_prefix = False
|
156 |
+
model.normalizer_spec.MergeFrom(normalizer_spec)
|
157 |
+
sp_model = model.SerializeToString()
|
158 |
+
tokenizer.LoadFromSerializedProto(sp_model)
|
159 |
+
return tokenizer
|
160 |
+
|
161 |
+
@property
|
162 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.vocab_size
|
163 |
+
def vocab_size(self):
|
164 |
+
return self.sp_model.get_piece_size()
|
165 |
+
|
166 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_vocab
|
167 |
+
def get_vocab(self):
|
168 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
169 |
+
vocab.update(self.added_tokens_encoder)
|
170 |
+
return vocab
|
171 |
+
|
172 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_special_tokens_mask
|
173 |
+
def get_special_tokens_mask(
|
174 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
175 |
+
) -> List[int]:
|
176 |
+
"""
|
177 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
178 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
token_ids_0 (`List[int]`):
|
182 |
+
List of IDs.
|
183 |
+
token_ids_1 (`List[int]`, *optional*):
|
184 |
+
Optional second list of IDs for sequence pairs.
|
185 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
186 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
187 |
+
|
188 |
+
Returns:
|
189 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
190 |
+
"""
|
191 |
+
if already_has_special_tokens:
|
192 |
+
return super().get_special_tokens_mask(
|
193 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
194 |
+
)
|
195 |
+
|
196 |
+
# normal case: some special tokens
|
197 |
+
if token_ids_1 is None:
|
198 |
+
return ([0] * len(token_ids_0)) + [1]
|
199 |
+
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
200 |
+
|
201 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._add_eos_if_not_present
|
202 |
+
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]:
|
203 |
+
"""Do not add eos again if user already added it."""
|
204 |
+
if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id:
|
205 |
+
warnings.warn(
|
206 |
+
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated"
|
207 |
+
" eos tokens being added."
|
208 |
+
)
|
209 |
+
return token_ids
|
210 |
+
else:
|
211 |
+
return token_ids + [self.eos_token_id]
|
212 |
+
|
213 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.create_token_type_ids_from_sequences
|
214 |
+
def create_token_type_ids_from_sequences(
|
215 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
216 |
+
) -> List[int]:
|
217 |
+
"""
|
218 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
219 |
+
use of token type ids, therefore a list of zeros is returned.
|
220 |
+
|
221 |
+
Args:
|
222 |
+
token_ids_0 (`List[int]`):
|
223 |
+
List of IDs.
|
224 |
+
token_ids_1 (`List[int]`, *optional*):
|
225 |
+
Optional second list of IDs for sequence pairs.
|
226 |
+
|
227 |
+
Returns:
|
228 |
+
`List[int]`: List of zeros.
|
229 |
+
"""
|
230 |
+
eos = [self.eos_token_id]
|
231 |
+
|
232 |
+
if token_ids_1 is None:
|
233 |
+
return len(token_ids_0 + eos) * [0]
|
234 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
235 |
+
|
236 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.build_inputs_with_special_tokens
|
237 |
+
def build_inputs_with_special_tokens(
|
238 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
239 |
+
) -> List[int]:
|
240 |
+
"""
|
241 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
242 |
+
adding special tokens. A sequence has the following format:
|
243 |
+
|
244 |
+
- single sequence: `X </s>`
|
245 |
+
- pair of sequences: `A </s> B </s>`
|
246 |
+
|
247 |
+
Args:
|
248 |
+
token_ids_0 (`List[int]`):
|
249 |
+
List of IDs to which the special tokens will be added.
|
250 |
+
token_ids_1 (`List[int]`, *optional*):
|
251 |
+
Optional second list of IDs for sequence pairs.
|
252 |
+
|
253 |
+
Returns:
|
254 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
255 |
+
"""
|
256 |
+
token_ids_0 = self._add_eos_if_not_present(token_ids_0)
|
257 |
+
if token_ids_1 is None:
|
258 |
+
return token_ids_0
|
259 |
+
else:
|
260 |
+
token_ids_1 = self._add_eos_if_not_present(token_ids_1)
|
261 |
+
return token_ids_0 + token_ids_1
|
262 |
+
|
263 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__getstate__
|
264 |
+
def __getstate__(self):
|
265 |
+
state = self.__dict__.copy()
|
266 |
+
state["sp_model"] = None
|
267 |
+
return state
|
268 |
+
|
269 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__setstate__
|
270 |
+
def __setstate__(self, d):
|
271 |
+
self.__dict__ = d
|
272 |
+
|
273 |
+
# for backward compatibility
|
274 |
+
if not hasattr(self, "sp_model_kwargs"):
|
275 |
+
self.sp_model_kwargs = {}
|
276 |
+
|
277 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
278 |
+
self.sp_model.Load(self.vocab_file)
|
279 |
+
|
280 |
+
def remove_punctuation(self, text: str) -> str:
|
281 |
+
return text.translate(str.maketrans("", "", string.punctuation))
|
282 |
+
|
283 |
+
# source: https://github.com/google-research/big_vision/blob/3b8e5ab6ad4f96e32b32826f9e1b8fd277914f9c/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94
|
284 |
+
def canonicalize_text(self, text, *, keep_punctuation_exact_string=None):
|
285 |
+
"""Returns canonicalized `text` (puncuation removed).
|
286 |
+
|
287 |
+
Args:
|
288 |
+
text (`str`):
|
289 |
+
String to be canonicalized.
|
290 |
+
keep_punctuation_exact_string (`str`, *optional*):
|
291 |
+
If provided, then this exact string is kept. For example providing '{}' will keep any occurrences of '{}'
|
292 |
+
(but will still remove '{' and '}' that appear separately).
|
293 |
+
"""
|
294 |
+
if keep_punctuation_exact_string:
|
295 |
+
text = keep_punctuation_exact_string.join(
|
296 |
+
self.remove_punctuation(part) for part in text.split(keep_punctuation_exact_string)
|
297 |
+
)
|
298 |
+
else:
|
299 |
+
text = self.remove_punctuation(text)
|
300 |
+
text = re.sub(r"\s+", " ", text)
|
301 |
+
text = text.strip()
|
302 |
+
|
303 |
+
return text
|
304 |
+
|
305 |
+
def tokenize(self, text: "TextInput", add_special_tokens=False, **kwargs) -> List[str]:
|
306 |
+
"""
|
307 |
+
Converts a string to a list of tokens.
|
308 |
+
"""
|
309 |
+
tokens = super().tokenize(SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " "), **kwargs)
|
310 |
+
|
311 |
+
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
|
312 |
+
tokens = tokens[1:]
|
313 |
+
return tokens
|
314 |
+
|
315 |
+
@property
|
316 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.unk_token_length
|
317 |
+
def unk_token_length(self):
|
318 |
+
return len(self.sp_model.encode(str(self.unk_token)))
|
319 |
+
|
320 |
+
def _tokenize(self, text, **kwargs):
|
321 |
+
"""
|
322 |
+
Returns a tokenized string.
|
323 |
+
|
324 |
+
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
|
325 |
+
SPIECE_UNDERLINE.
|
326 |
+
|
327 |
+
For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give `['H', 'e', 'y']` instead of `['▁He', 'y']`.
|
328 |
+
|
329 |
+
Thus we always encode `f"{unk_token}text"` and strip the `unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
|
330 |
+
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
|
331 |
+
"""
|
332 |
+
text = self.canonicalize_text(text, keep_punctuation_exact_string=None)
|
333 |
+
tokens = self.sp_model.encode(text, out_type=str)
|
334 |
+
|
335 |
+
# 1. Encode string + prefix ex: "<unk> Hey"
|
336 |
+
tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
|
337 |
+
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
|
338 |
+
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
|
339 |
+
|
340 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_token_to_id
|
341 |
+
def _convert_token_to_id(self, token):
|
342 |
+
"""Converts a token (str) in an id using the vocab."""
|
343 |
+
return self.sp_model.piece_to_id(token)
|
344 |
+
|
345 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_id_to_token
|
346 |
+
def _convert_id_to_token(self, index):
|
347 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
348 |
+
token = self.sp_model.IdToPiece(index)
|
349 |
+
return token
|
350 |
+
|
351 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.convert_tokens_to_string
|
352 |
+
def convert_tokens_to_string(self, tokens):
|
353 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
354 |
+
current_sub_tokens = []
|
355 |
+
# since we manually add the prefix space, we have to remove it
|
356 |
+
tokens[0] = tokens[0].lstrip(SPIECE_UNDERLINE)
|
357 |
+
out_string = ""
|
358 |
+
prev_is_special = False
|
359 |
+
for token in tokens:
|
360 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
361 |
+
if token in self.all_special_tokens:
|
362 |
+
if not prev_is_special:
|
363 |
+
out_string += " "
|
364 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
365 |
+
prev_is_special = True
|
366 |
+
current_sub_tokens = []
|
367 |
+
else:
|
368 |
+
current_sub_tokens.append(token)
|
369 |
+
prev_is_special = False
|
370 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
371 |
+
return out_string.strip()
|
372 |
+
|
373 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.save_vocabulary
|
374 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
375 |
+
if not os.path.isdir(save_directory):
|
376 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
377 |
+
return
|
378 |
+
out_vocab_file = os.path.join(
|
379 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
380 |
+
)
|
381 |
+
|
382 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
383 |
+
copyfile(self.vocab_file, out_vocab_file)
|
384 |
+
elif not os.path.isfile(self.vocab_file):
|
385 |
+
with open(out_vocab_file, "wb") as fi:
|
386 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
387 |
+
fi.write(content_spiece_model)
|
388 |
+
|
389 |
+
return (out_vocab_file,)
|