Update README.md
Browse files
README.md
CHANGED
@@ -3,8 +3,6 @@ library_name: transformers
|
|
3 |
license: apache-2.0
|
4 |
language:
|
5 |
- en
|
6 |
-
datasets:
|
7 |
-
- HuggingFaceTB/smollm-corpus
|
8 |
---
|
9 |
|
10 |
|
@@ -14,13 +12,6 @@ datasets:
|
|
14 |
<img src="https://huggingface.co/datasets/HuggingFaceTB/images/resolve/main/banner_smol.png" alt="SmolLM" width="1100" height="600">
|
15 |
</center>
|
16 |
|
17 |
-
## Table of Contents
|
18 |
-
|
19 |
-
1. [Model Summary](##model-summary)
|
20 |
-
2. [Limitations](##limitations)
|
21 |
-
3. [Training](##training)
|
22 |
-
4. [License](##license)
|
23 |
-
5. [Citation](##citation)
|
24 |
|
25 |
## Model Summary
|
26 |
|
@@ -36,65 +27,23 @@ This is the SmolLM-135M-Instruct.
|
|
36 |
pip install transformers
|
37 |
```
|
38 |
|
39 |
-
#### Running the model on CPU/GPU/multi GPU
|
40 |
-
* _Using full precision_
|
41 |
```python
|
42 |
# pip install git+https://github.com/huggingface/transformers.git # TODO: merge PR to main
|
43 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
44 |
-
checkpoint = "HuggingFaceTB/SmolLM-135M"
|
|
|
45 |
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
46 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
47 |
# for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
|
48 |
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
49 |
-
inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
|
50 |
-
outputs = model.generate(inputs)
|
51 |
-
print(tokenizer.decode(outputs[0]))
|
52 |
-
```
|
53 |
-
```bash
|
54 |
-
>>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
|
55 |
-
Memory footprint: 12624.81 MB
|
56 |
-
```
|
57 |
-
* _Using `torch.bfloat16`_
|
58 |
-
```python
|
59 |
-
# pip install accelerate
|
60 |
-
import torch
|
61 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
62 |
-
checkpoint = "HuggingFaceTB/SmolLM-135M"
|
63 |
-
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
64 |
-
# for fp16 use `torch_dtype=torch.float16` instead
|
65 |
-
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16)
|
66 |
-
inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to("cuda")
|
67 |
-
outputs = model.generate(inputs)
|
68 |
-
print(tokenizer.decode(outputs[0]))
|
69 |
-
```
|
70 |
-
```bash
|
71 |
-
>>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
|
72 |
-
Memory footprint: 269.03 MB
|
73 |
-
```
|
74 |
-
|
75 |
-
#### Quantized Versions through `bitsandbytes`
|
76 |
-
* _Using 8-bit precision (int8)_
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
checkpoint = "HuggingFaceTB/SmolLM-135M"
|
84 |
-
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
85 |
-
model = AutoModelForCausalLM.from_pretrained(checkpoint, quantization_config=quantization_config)
|
86 |
-
inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to("cuda")
|
87 |
-
outputs = model.generate(inputs)
|
88 |
print(tokenizer.decode(outputs[0]))
|
89 |
```
|
90 |
-
```bash
|
91 |
-
>>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
|
92 |
-
# load_in_8bit
|
93 |
-
Memory footprint: 162.87 MB
|
94 |
-
# load_in_4bit
|
95 |
-
>>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
|
96 |
-
Memory footprint: 109.78 MB
|
97 |
-
```
|
98 |
|
99 |
# Limitations
|
100 |
|
|
|
3 |
license: apache-2.0
|
4 |
language:
|
5 |
- en
|
|
|
|
|
6 |
---
|
7 |
|
8 |
|
|
|
12 |
<img src="https://huggingface.co/datasets/HuggingFaceTB/images/resolve/main/banner_smol.png" alt="SmolLM" width="1100" height="600">
|
13 |
</center>
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
## Model Summary
|
17 |
|
|
|
27 |
pip install transformers
|
28 |
```
|
29 |
|
|
|
|
|
30 |
```python
|
31 |
# pip install git+https://github.com/huggingface/transformers.git # TODO: merge PR to main
|
32 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
33 |
+
checkpoint = "HuggingFaceTB/SmolLM-135M-Instruct"
|
34 |
+
|
35 |
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
36 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
37 |
# for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
|
38 |
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
messages = [{"role": "user", "content": "List the steps to bake a chocolate cake from scratch."}]
|
41 |
+
input_text=tokenizer.apply_chat_template(messages, tokenize=False)
|
42 |
+
print(input_text)
|
43 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt").to("cuda")
|
44 |
+
outputs = model.generate(inputs, max_new_tokens=100, temperature=0.6, top_p=0.92, do_sample=True)
|
|
|
|
|
|
|
|
|
|
|
45 |
print(tokenizer.decode(outputs[0]))
|
46 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
# Limitations
|
49 |
|