File size: 1,971 Bytes
57147fd eaf6d58 57147fd eaf6d58 57147fd eaf6d58 2bd05b8 57147fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
base_model: HuggingFaceTB/cosmo2-350M-webinst-sc2
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- argilla/dpo-mix-7k
model-index:
- name: cosmo2-350M-webinst-sc2-dpo-argilla-ep1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/loubnabnl/huggingface/runs/z5gb262b)
# cosmo2-350M-webinst-sc2-dpo-argilla-ep1
This model is a fine-tuned version of [HuggingFaceTB/cosmo2-350M-webinst-sc2](https://huggingface.co/HuggingFaceTB/cosmo2-350M-webinst-sc2) on the argilla/dpo-mix-7k dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6834
- Rewards/chosen: -0.0086
- Rewards/rejected: -0.0304
- Rewards/accuracies: 0.5938
- Rewards/margins: 0.0218
- Logps/rejected: -418.5675
- Logps/chosen: -442.4709
- Logits/rejected: -0.7106
- Logits/chosen: -0.5211
- IFEval prompt loose 17.01
- IFEval prompt strict 14.05
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1
|