Initial commit
Browse files- README.md +19 -8
- args.yml +10 -10
- env_kwargs.yml +1 -1
- ppo-seals-MountainCar-v0.zip +2 -2
- ppo-seals-MountainCar-v0/_stable_baselines3_version +1 -1
- ppo-seals-MountainCar-v0/data +63 -60
- ppo-seals-MountainCar-v0/policy.optimizer.pth +1 -1
- ppo-seals-MountainCar-v0/policy.pth +2 -2
- ppo-seals-MountainCar-v0/system_info.txt +9 -7
- replay.mp4 +2 -2
- results.json +1 -1
- train_eval_metrics.zip +2 -2
- vec_normalize.pkl +2 -2
README.md
CHANGED
@@ -8,16 +8,17 @@ tags:
|
|
8 |
model-index:
|
9 |
- name: PPO
|
10 |
results:
|
11 |
-
-
|
12 |
-
- type: mean_reward
|
13 |
-
value: -123.10 +/- 25.47
|
14 |
-
name: mean_reward
|
15 |
-
task:
|
16 |
type: reinforcement-learning
|
17 |
name: reinforcement-learning
|
18 |
dataset:
|
19 |
name: seals/MountainCar-v0
|
20 |
type: seals/MountainCar-v0
|
|
|
|
|
|
|
|
|
|
|
21 |
---
|
22 |
|
23 |
# **PPO** Agent playing **seals/MountainCar-v0**
|
@@ -35,21 +36,26 @@ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
|
35 |
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
|
|
|
|
|
|
|
|
|
|
|
38 |
```
|
39 |
# Download model and save it into the logs/ folder
|
40 |
python -m rl_zoo3.load_from_hub --algo ppo --env seals/MountainCar-v0 -orga HumanCompatibleAI -f logs/
|
41 |
-
python enjoy
|
42 |
```
|
43 |
|
44 |
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
45 |
```
|
46 |
python -m rl_zoo3.load_from_hub --algo ppo --env seals/MountainCar-v0 -orga HumanCompatibleAI -f logs/
|
47 |
-
rl_zoo3
|
48 |
```
|
49 |
|
50 |
## Training (with the RL Zoo)
|
51 |
```
|
52 |
-
python train
|
53 |
# Upload the model and generate video (when possible)
|
54 |
python -m rl_zoo3.push_to_hub --algo ppo --env seals/MountainCar-v0 -f logs/ -orga HumanCompatibleAI
|
55 |
```
|
@@ -81,3 +87,8 @@ OrderedDict([('batch_size', 512),
|
|
81 |
'norm_reward': True},
|
82 |
'norm_reward': False})])
|
83 |
```
|
|
|
|
|
|
|
|
|
|
|
|
8 |
model-index:
|
9 |
- name: PPO
|
10 |
results:
|
11 |
+
- task:
|
|
|
|
|
|
|
|
|
12 |
type: reinforcement-learning
|
13 |
name: reinforcement-learning
|
14 |
dataset:
|
15 |
name: seals/MountainCar-v0
|
16 |
type: seals/MountainCar-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -97.00 +/- 8.26
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
|
24 |
# **PPO** Agent playing **seals/MountainCar-v0**
|
|
|
36 |
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
```
|
45 |
# Download model and save it into the logs/ folder
|
46 |
python -m rl_zoo3.load_from_hub --algo ppo --env seals/MountainCar-v0 -orga HumanCompatibleAI -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo ppo --env seals/MountainCar-v0 -f logs/
|
48 |
```
|
49 |
|
50 |
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
```
|
52 |
python -m rl_zoo3.load_from_hub --algo ppo --env seals/MountainCar-v0 -orga HumanCompatibleAI -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo ppo --env seals/MountainCar-v0 -f logs/
|
54 |
```
|
55 |
|
56 |
## Training (with the RL Zoo)
|
57 |
```
|
58 |
+
python -m rl_zoo3.train --algo ppo --env seals/MountainCar-v0 -f logs/
|
59 |
# Upload the model and generate video (when possible)
|
60 |
python -m rl_zoo3.push_to_hub --algo ppo --env seals/MountainCar-v0 -f logs/ -orga HumanCompatibleAI
|
61 |
```
|
|
|
87 |
'norm_reward': True},
|
88 |
'norm_reward': False})])
|
89 |
```
|
90 |
+
|
91 |
+
# Environment Arguments
|
92 |
+
```python
|
93 |
+
{'render_mode': 'rgb_array'}
|
94 |
+
```
|
args.yml
CHANGED
@@ -10,7 +10,7 @@
|
|
10 |
- - env_kwargs
|
11 |
- null
|
12 |
- - eval_episodes
|
13 |
-
-
|
14 |
- - eval_freq
|
15 |
- 25000
|
16 |
- - gym_packages
|
@@ -18,7 +18,7 @@
|
|
18 |
- - hyperparams
|
19 |
- null
|
20 |
- - log_folder
|
21 |
-
-
|
22 |
- - log_interval
|
23 |
- -1
|
24 |
- - max_total_trials
|
@@ -38,7 +38,7 @@
|
|
38 |
- - no_optim_plots
|
39 |
- false
|
40 |
- - num_threads
|
41 |
-
-
|
42 |
- - optimization_log_path
|
43 |
- null
|
44 |
- - optimize_hyperparameters
|
@@ -54,15 +54,15 @@
|
|
54 |
- - save_replay_buffer
|
55 |
- false
|
56 |
- - seed
|
57 |
-
-
|
58 |
- - storage
|
59 |
- null
|
60 |
- - study_name
|
61 |
- null
|
62 |
- - tensorboard_log
|
63 |
-
-
|
64 |
- - track
|
65 |
-
-
|
66 |
- - trained_agent
|
67 |
- ''
|
68 |
- - truncate_last_trajectory
|
@@ -74,8 +74,8 @@
|
|
74 |
- - verbose
|
75 |
- 1
|
76 |
- - wandb_entity
|
77 |
-
- ernestum
|
78 |
-
- - wandb_project_name
|
79 |
-
- seals-experts-normalized
|
80 |
-
- - yaml_file
|
81 |
- null
|
|
|
|
|
|
|
|
|
|
10 |
- - env_kwargs
|
11 |
- null
|
12 |
- - eval_episodes
|
13 |
+
- 0
|
14 |
- - eval_freq
|
15 |
- 25000
|
16 |
- - gym_packages
|
|
|
18 |
- - hyperparams
|
19 |
- null
|
20 |
- - log_folder
|
21 |
+
- gymnasium_models
|
22 |
- - log_interval
|
23 |
- -1
|
24 |
- - max_total_trials
|
|
|
38 |
- - no_optim_plots
|
39 |
- false
|
40 |
- - num_threads
|
41 |
+
- 4
|
42 |
- - optimization_log_path
|
43 |
- null
|
44 |
- - optimize_hyperparameters
|
|
|
54 |
- - save_replay_buffer
|
55 |
- false
|
56 |
- - seed
|
57 |
+
- 392828721
|
58 |
- - storage
|
59 |
- null
|
60 |
- - study_name
|
61 |
- null
|
62 |
- - tensorboard_log
|
63 |
+
- ''
|
64 |
- - track
|
65 |
+
- false
|
66 |
- - trained_agent
|
67 |
- ''
|
68 |
- - truncate_last_trajectory
|
|
|
74 |
- - verbose
|
75 |
- 1
|
76 |
- - wandb_entity
|
|
|
|
|
|
|
|
|
77 |
- null
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
env_kwargs.yml
CHANGED
@@ -1 +1 @@
|
|
1 |
-
|
|
|
1 |
+
render_mode: rgb_array
|
ppo-seals-MountainCar-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a401c736574861304ae9f91f50e18071b68f7a385557fffd1a3e812a8efe00b
|
3 |
+
size 138505
|
ppo-seals-MountainCar-v0/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
|
|
|
1 |
+
2.2.0a3
|
ppo-seals-MountainCar-v0/data
CHANGED
@@ -3,77 +3,50 @@
|
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
-
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"
|
14 |
-
"
|
15 |
-
"
|
16 |
-
"
|
17 |
-
"
|
|
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {
|
23 |
":type:": "<class 'dict'>",
|
24 |
-
":serialized:": "
|
25 |
"activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
|
26 |
-
"net_arch":
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
}
|
37 |
-
],
|
38 |
"features_extractor_class": "<class 'imitation.policies.base.NormalizeFeaturesExtractor'>"
|
39 |
},
|
40 |
-
"observation_space": {
|
41 |
-
":type:": "<class 'gym.spaces.box.Box'>",
|
42 |
-
":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
43 |
-
"dtype": "float32",
|
44 |
-
"_shape": [
|
45 |
-
2
|
46 |
-
],
|
47 |
-
"low": "[-1.2 -0.07]",
|
48 |
-
"high": "[0.6 0.07]",
|
49 |
-
"bounded_below": "[ True True]",
|
50 |
-
"bounded_above": "[ True True]",
|
51 |
-
"_np_random": null
|
52 |
-
},
|
53 |
-
"action_space": {
|
54 |
-
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
55 |
-
":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgF02LKRNUMWp5UY0rFo3to63pirwt8VMfWemiJPbZOf2721rNZtrrClEJNeSBQYPlxnW3+Qdgeh1oXhy1T85Qr7p2RIQGALkTcfSX6qD84NVzucjcSoAohkcTBno1Wa3fdKyobsBPWsJ9NIVhKEpgsZSfw3pKStZI9KWXyfp23CSTRNyrN0C5R66BSVvNp1nLuN//VNa+IjKN+AJLbUEddlZNBLzht+JMkIZmhE1aqKijStu93g4WLXKIz0qc8DN0lGyc5OetvPrbJcxbW4HEi/UJ3dsOwkaILG4M2WIYYfocWE14bBroZihB45nuoElDbfnEnY0tanUGIGdY8G9XIcoYnOkkGK1b1V4UHf0VIJpI0imxZH7NW8uUSu9vIxM83WzbYFdD4JW5Mkz4xDFsgQLyxzT5V+wBXGmo2H+gxJ9MBDuDBJM1mpzSHcn6gxd/aZu6EVFWkQ6p+A9dfTtLNpJmbJhyYuOduaFDsy/5bCwBXa3PAAVZb2ws90X3WJd87PiPhQ9/z1pd5I5N3M47q5+Vxbrq5L9BYdQFZ0EaVhQ6NaNvbjfNCHg4wChKSzKTdnw+e4SnpHPqgztYlvqjiSPKWT+uXUpOOuLNJmhlT0Vt7DT763gYCPJ5gQsAfTUGJ8n39zDnNWDx6GlhP1Fvsneb+L+p2+wxDrkPiUbuL8bDiwsxoToYtebC4gTWiVjM/2DcHjEC5Kx/46hMbVmcwc9rqLgFI+nH98q9KmPI8TqLn3wzXt8KFiceRCwiKdCHrT8SzNv5YPp45lV7xyhHdWO3XsPULNRDzbV7LLQxXZZu/SObgGCqs7oWVGx4WNR1eKyYnW8pV97abHWqEPDvZ9jgzBOWYtjs3KsQzEuSwZ4t9Lgz8OdgHV5ntTAZYADt1MEitu49fO8Pss1Td6nLLWSpt9LD4ULM+aymHh/PUDUN5KDfWYL4xf8m8kT23+DycDmPiFmk3qMF4qVXbxLWnacvTVAor6vqkquSYhJTfyZpIdFm4VurcsnPy3rfWQ+/SObSS0ztn41qF7Ciep8g2LhulU5AFd9G09t5McvzCL1xz5vgyWcFy0l0YFVdcaAVNGXN1RQOGwJ8ACNPLHzCUpvzMBtsYq2xlaAhzNhfS5v9RzuTyO8jJQneCutVg6HZy4VNNjE6FK0aCstiesqBi3VztMguE6hofNny5f2KEHJViPcBL7Bru19AbI8/E/mk4gS4Hk9L1BpzcZxt1405r8L8FXoA9/XZtI2yHpWpiFI2MKdp5x4G8fvlOcC0sfDeyVyDhZs9ex2s4rFkMSOkcTRcgq7wc3mNDdT/cWfd6Ht83R0iVbSaKsG9jweJ68ZxVgkhPPEprj+p6jGQbeDHtniIZXUgUL7W7FZINrTh/mX+JkXSWcMX6deCDySLrKjf0oLcRd3y1SlG7YeazxK0ruIr4cfJX/t1/2AKDJhCI+N+OsPbkgOuWeb+vHjCgABUi0+vu6rH7uTSe9uCBScX2O1+tQQYTTjkVe95c/rKolJbtXpuVbDM7wGKIKkZGltTVHkAuiRMrikPHLYGo6xEN240BNr/Y2HXhIqzj6PxN+2jLjL4cnk+fH4NJ07c3Ua1pOlNszITMD5KF0xhHxxO04WlR7iIgxOpLZNTJQ4WT4TQGCRJalcxkk6tYZ6KZUUYwq/PJVAw80x0qvW7+UVgxMFmBlHdZJhsfSWpSlwYl0v0YxU6Y1dcUBLIrRqFGYY2NJ4YyFkMYi2V/goU7cTXlZvviTcViIcSxq8cZTL3qFtFwBeBRYjHr7Bh13YdiCORSlsSgcbFk3p7ZzHEVjIM9ZNuXVbMqWXv4bk7qV9SzU+79EEtD+b6Pykmgaw7qEsOVLyXbHcI2HAbv+YNKkd7bhJHFu/NpOEC+9IER5LRWmB468QAgy5NPm+Wg8GWdLV57JB7Ek94+rFmSSmT55KdErI1ZaYlqr4et442uo5wRaGJtm0lM5/Xgfhoj/OQYrjbcAH1fbYmGUbyduMSFZUuKa4s3I8oUjfPPgVhbbebci7aG6ziOI8UW+8BC4ie4L/yrsn4Ztt0xdxXli0o0SJQhS/rcQ9lqTc3Vxnhf9ZF70VDq0d8Tu/hu/rXc5YcgPIS2COFIgD+7DlVyjkMPvkkxc/uJgD/S8FOCvydDloTtlEUi965owPed7HByJk0TfK0gLpSoKMVarPckfT+/Ex45mf4SEmfCEBcgp3ORGhKeOUceUYi/BZLyVN/zf+8VG1VVNGhm0HcZk3U3OMH6sxkMYkdPvjoBzkKTNPOf2GbKzU7afqZT8myddOY1vudUfsCxurWUHxfDXTaK2M9LhvJnFKXZXLln1UTKe2CsEz+nUZsNYNwNd4g6EI2onmdDT7mek1/v609g2i5hquP32GRSuXuWWGuRwHjOPZX7lK6uFpSYZyz0fthYXTWQ4ganuJwKdBSEv45/ZUaEarYi2pcxshWmi9bq8qhRWaiKfLxJ+7jzAlezVNa238qZaRSDwci3OU1VZw9QG3lzScjAejzkaAZakkhZSVc+zS8QeqWn0pJoPk6wStP0jhomM2fKExDXSodl5HePqHl+dJSgtReqnstbmoHsey+zAL4C/hIIwbIPHegLQjozP+OlrNfwsWwQSo5bWwcRh+LfhjuqrAoEV1w2X5gtts/wkOXbsZdhxl1sX1e5LPc8gW6oIaG7AfcA/GQpVxauq3B8bbXBuzDw0KRYmOTAnsBX9TDslSi8TBlpRLlywvvNLQ2x5Ua5j6lJLJJbQjLvM+NeKOptonRfq3pYYjB6Sxxai+M6iAWdBf+haYoDJFWR335aF6tlFCwymg1wO5LdPJZrHz+EEtVQ/SE5Z1aW9zj7yAM74th+TZORUC3jzkzHuealHOdSpTeOhEXf21W9ck49PCZv0P4R5H/rgHLV/8PxJy1zuRSvpckpTEmZHdQs/2NA70Gefa1zShGw/ukdy6cgyEDntg9bwIWkrBCQZf37jhsymDi9TZq07l8YHnlYUrbN2+nX2bS4SwJpkH90+P81dFJuoXksmSDGrfpnI7Gk5xoB5YVprAysQqqQ8sMM65dK5JdG9xwQfIpP4QOYzx2VnWEwDCCPjmPakalBdDtdDjjtOamsaOqZ65UHxboGR7ixhUOjmQ87ZzkbiGfF93rm35/r4Lsy2ddPrfcsLDK8wbyOUY6iPOtGCXDg51rT3MR+Znc5CcOxzDPSbIR3zN4t9il36Sq1ipw96sM+STtj/nMsOtQpah9mp8OB+7xSouQ1TRZ+qQAkcuxfKKZhmZJsVJQLqKC9hhEsfYFEj0xhXQrU1KAoDKQfwXEhaPXcAS7tptlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
56 |
-
"n": 3,
|
57 |
-
"_shape": [],
|
58 |
-
"dtype": "int64",
|
59 |
-
"_np_random": "RandomState(MT19937)"
|
60 |
-
},
|
61 |
-
"n_envs": 1,
|
62 |
"num_timesteps": 1003520,
|
63 |
"_total_timesteps": 1000000,
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
-
"seed":
|
66 |
"action_noise": null,
|
67 |
-
"start_time":
|
68 |
"learning_rate": {
|
69 |
":type:": "<class 'function'>",
|
70 |
-
":serialized:": "
|
71 |
-
},
|
72 |
-
"tensorboard_log": "runs/seals/MountainCar-v0__ppo__1__1672653886/seals-MountainCar-v0",
|
73 |
-
"lr_schedule": {
|
74 |
-
":type:": "<class 'function'>",
|
75 |
-
":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL21heGltaWxpYW4vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPz1Vp+meSZSFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
76 |
},
|
|
|
77 |
"_last_obs": null,
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -81,21 +54,47 @@
|
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
-
":serialized:": "
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": false,
|
88 |
"sde_sample_freq": -1,
|
89 |
"_current_progress_remaining": -0.0035199999999999676,
|
|
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
-
":serialized:": "
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
96 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
},
|
98 |
"_n_updates": 4900,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
"n_steps": 256,
|
100 |
"gamma": 0.99,
|
101 |
"gae_lambda": 0.98,
|
@@ -106,9 +105,13 @@
|
|
106 |
"n_epochs": 20,
|
107 |
"clip_range": {
|
108 |
":type:": "<class 'function'>",
|
109 |
-
":serialized:": "
|
110 |
},
|
111 |
"clip_range_vf": null,
|
112 |
"normalize_advantage": true,
|
113 |
-
"target_kl": null
|
|
|
|
|
|
|
|
|
114 |
}
|
|
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f06f7a56ee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f06f7a56f70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f06f79db040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f06f79db0d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f06f79db160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f06f79db1f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f06f79db280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f06f79db310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f06f79db3a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f06f79db430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f06f79db4c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f06f79db550>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f06f7a54d80>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
24 |
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVuQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJR9lCiMAnBplF2UKEtAS0BljAJ2ZpRdlChLQEtAZXWMGGZlYXR1cmVzX2V4dHJhY3Rvcl9jbGFzc5SMF2ltaXRhdGlvbi5wb2xpY2llcy5iYXNllIwaTm9ybWFsaXplRmVhdHVyZXNFeHRyYWN0b3KUk5R1Lg==",
|
26 |
"activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
|
27 |
+
"net_arch": {
|
28 |
+
"pi": [
|
29 |
+
64,
|
30 |
+
64
|
31 |
+
],
|
32 |
+
"vf": [
|
33 |
+
64,
|
34 |
+
64
|
35 |
+
]
|
36 |
+
},
|
|
|
|
|
37 |
"features_extractor_class": "<class 'imitation.policies.base.NormalizeFeaturesExtractor'>"
|
38 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
"num_timesteps": 1003520,
|
40 |
"_total_timesteps": 1000000,
|
41 |
"_num_timesteps_at_start": 0,
|
42 |
+
"seed": 0,
|
43 |
"action_noise": null,
|
44 |
+
"start_time": 1694771152324454564,
|
45 |
"learning_rate": {
|
46 |
":type:": "<class 'function'>",
|
47 |
+
":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPz1Vp+meSZSFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
|
|
|
|
|
|
|
|
|
|
48 |
},
|
49 |
+
"tensorboard_log": null,
|
50 |
"_last_obs": null,
|
51 |
"_last_episode_starts": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
54 |
},
|
55 |
"_last_original_obs": {
|
56 |
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAHyIFb8AAAAAANsRvwAAAAAMG92+AAAAAAfI4r4AAAAAqWLhvgAAAAB2KRa/AAAAAGsdDL8AAAAAVwjavgAAAABhC/m+AAAAANRiCr8AAAAAqJ4QvwAAAADaLAi/AAAAAKofB78AAAAAxmMPvwAAAAA0Jem+AAAAAFRmCL8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="
|
58 |
},
|
59 |
"_episode_num": 0,
|
60 |
"use_sde": false,
|
61 |
"sde_sample_freq": -1,
|
62 |
"_current_progress_remaining": -0.0035199999999999676,
|
63 |
+
"_stats_window_size": 100,
|
64 |
"ep_info_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFoAAAAAAACMAWyUS8iMAXSUR0BmG5bbDdgwdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmG22E0zj4dX2UKGgGR8BZgAAAAAAAaAdLyGgIR0BmG2ce8wpOdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0BmG2DOC5EudX2UKGgGR8BWAAAAAAAAaAdLyGgIR0BmMScqe9SNdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmMSCFsYVJdX2UKGgGR8BVQAAAAAAAaAdLyGgIR0BmMRnlGPPtdX2UKGgGR8BWAAAAAAAAaAdLyGgIR0BmMRKQJXyRdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmMQw9JSR9dX2UKGgGR8BXgAAAAAAAaAdLyGgIR0BmMQWJrLyMdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0BmMP9xZMcqdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmMPlhgE2YdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmMPJtBOYZdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmMOxD9fkWdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0BmMOYYzi0fdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmMN+gDifhdX2UKGgGR8BVwAAAAAAAaAdLyGgIR0BmMNmDlHSXdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0BmMLApKBd2dX2UKGgGR8BVQAAAAAAAaAdLyGgIR0BmMKm8/UvxdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmMKNuLrHEdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmRm63AmAtdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmRmfqX4TLdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmRmFJxvNvdX2UKGgGR8BVQAAAAAAAaAdLyGgIR0BmRlnwob4rdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmRlOdoWYXdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmRkzuWrwOdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0BmRkbT+ee4dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmRkDKYAsDdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0BmRjnX/YJ3dX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmRjOzIFNddX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmRi2OQyRCdX2UKGgGR8BjQAAAAAAAaAdLyGgIR0BmRicbzbvgdX2UKGgGR8BWwAAAAAAAaAdLyGgIR0BmRiEFnqVydX2UKGgGR8BVQAAAAAAAaAdLyGgIR0BmRfexfOUudX2UKGgGR8BagAAAAAAAaAdLyGgIR0BmRfFNtZV5dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmResDGLk0dX2UKGgGR8BZgAAAAAAAaAdLyGgIR0BmW9IbwSamdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmW8tVaOghdX2UKGgGR8Bk4AAAAAAAaAdLyGgIR0BmW8S9M9KVdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmW71yvLX+dX2UKGgGR8BVAAAAAAAAaAdLyGgIR0BmW7cqOLiudX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmW7B/I8yOdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmW6pvP1L8dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmW6RyOq//dX2UKGgGR8BVAAAAAAAAaAdLyGgIR0BmW52ZAprldX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmW5d0JWvKdX2UKGgGR8BjoAAAAAAAaAdLyGgIR0BmW5FTefqYdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmW4rjHXEqdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmW4TTOPeYdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmW1uBMBZIdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0BmW1UlzEJjdX2UKGgGR8BVwAAAAAAAaAdLyGgIR0BmW07dSEUTdX2UKGgGR8BUwAAAAAAAaAdLyGgIR0BmYY065oXbdX2UKGgGR8BVAAAAAAAAaAdLyGgIR0BmYYYekpI+dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmYX93r2QGdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmYXgYP5HmdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmYXG8274BdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0BmYWsFMZgpdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmYWTmnwXqdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmYV7Uoa1kdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmYVfgJkXldX2UKGgGR8BaQAAAAAAAaAdLyGgIR0BmYVG3F1jidX2UKGgGR8BVQAAAAAAAaAdLyGgIR0BmYUuJ1q33dX2UKGgGR8BaQAAAAAAAaAdLyGgIR0BmYUUM5OrRdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmYT7sOXmedX2UKGgGR8BXQAAAAAAAaAdLyGgIR0BmYRWLgn+idX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmYQ8dPtUodX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmYQjIJZ4fdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmdvIlt0mudX2UKGgGR8BYwAAAAAAAaAdLyGgIR0BmdutSydFwdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmduSyMUAUdX2UKGgGR8BUwAAAAAAAaAdLyGgIR0Bmdt1ZDArQdX2UKGgGR8BWgAAAAAAAaAdLyGgIR0BmdtcGC7K8dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmdtBUrCm/dX2UKGgGR8BaQAAAAAAAaAdLyGgIR0Bmdso6S1VpdX2UKGgGR8BZQAAAAAAAaAdLyGgIR0BmdsQoTfzjdX2UKGgGR8BVAAAAAAAAaAdLyGgIR0Bmdr04BFNMdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0BmdrcO9WZJdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0BmdrDn/1g6dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmdqprDZUUdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmdqRMewLWdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0Bmdnrv9cbBdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmdnSF49owdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0Bmdm4uscQzdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmjAiC8OCodX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmjAFzMibEdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0Bmi/rQgLZ0dX2UKGgGR8BZgAAAAAAAaAdLyGgIR0Bmi/N1QqI8dX2UKGgGR8BZwAAAAAAAaAdLyGgIR0Bmi+0gKWszdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0Bmi+ZssQNDdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0Bmi+BOHnEEdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0Bmi9o8IRh+dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0Bmi9NHpbD/dX2UKGgGR8BZgAAAAAAAaAdLyGgIR0Bmi80aZQYUdX2UKGgGR8BWAAAAAAAAaAdLyGgIR0Bmi8b1h9b5dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0Bmi8B6rvLHdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0Bmi7pcHGCJdX2UKGgGR8BVQAAAAAAAaAdLyGgIR0Bmi5EBsANodX2UKGgGR8BaAAAAAAAAaAdLyGgIR0Bmi4qXnhbXdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0Bmi4RGtp22dWUu"
|
67 |
},
|
68 |
"ep_success_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
70 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
},
|
72 |
"_n_updates": 4900,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
75 |
+
":serialized:": "gAWVngEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWAgAAAAAAAAABAZRoFEsChZRoGHSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBAolggAAAAAAAAAmpmZvylcj72UaApLAoWUaBh0lFKUjARoaWdolGgQKJYIAAAAAAAAAJqZGT8pXI89lGgKSwKFlGgYdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=",
|
76 |
+
"dtype": "float32",
|
77 |
+
"bounded_below": "[ True True]",
|
78 |
+
"bounded_above": "[ True True]",
|
79 |
+
"_shape": [
|
80 |
+
2
|
81 |
+
],
|
82 |
+
"low": "[-1.2 -0.07]",
|
83 |
+
"high": "[0.6 0.07]",
|
84 |
+
"low_repr": "[-1.2 -0.07]",
|
85 |
+
"high_repr": "[0.6 0.07]",
|
86 |
+
"_np_random": null
|
87 |
+
},
|
88 |
+
"action_space": {
|
89 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
90 |
+
":serialized:": "gAWVugEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB6MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCmKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
|
91 |
+
"n": "3",
|
92 |
+
"start": "0",
|
93 |
+
"_shape": [],
|
94 |
+
"dtype": "int64",
|
95 |
+
"_np_random": "Generator(PCG64)"
|
96 |
+
},
|
97 |
+
"n_envs": 1,
|
98 |
"n_steps": 256,
|
99 |
"gamma": 0.99,
|
100 |
"gae_lambda": 0.98,
|
|
|
105 |
"n_epochs": 20,
|
106 |
"clip_range": {
|
107 |
":type:": "<class 'function'>",
|
108 |
+
":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
109 |
},
|
110 |
"clip_range_vf": null,
|
111 |
"normalize_advantage": true,
|
112 |
+
"target_kl": null,
|
113 |
+
"lr_schedule": {
|
114 |
+
":type:": "<class 'function'>",
|
115 |
+
":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPz1Vp+meSZSFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
116 |
+
}
|
117 |
}
|
ppo-seals-MountainCar-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 80889
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe1c31ec7330c2541c0a041c35dbb6fabeaf54167bbb12708858af3318b003d8
|
3 |
size 80889
|
ppo-seals-MountainCar-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db04f92e352505178fbc6e573fe383593c3755cbf7097e4ad8672c4c4e3ee434
|
3 |
+
size 41528
|
ppo-seals-MountainCar-v0/system_info.txt
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
-
OS: Linux-5.4.0-
|
2 |
-
Python: 3.8.10
|
3 |
-
Stable-Baselines3:
|
4 |
-
PyTorch:
|
5 |
-
GPU Enabled: False
|
6 |
-
Numpy: 1.
|
7 |
-
|
|
|
|
|
|
1 |
+
- OS: Linux-5.4.0-156-generic-x86_64-with-glibc2.29 # 173-Ubuntu SMP Tue Jul 11 07:25:22 UTC 2023
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 2.2.0a3
|
4 |
+
- PyTorch: 2.0.1+cu117
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.24.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.21.0
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5dfcea509de7c1b1323b96d2ba6e68ebe8f5924892b90b54aa65ce49f7756dc4
|
3 |
+
size 143835
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -97.0, "std_reward": 8.258329128825032, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-19T11:40:45.961331"}
|
train_eval_metrics.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cdeb0e756f12a772c492c7bc0011bd8abb8b0fbbd94a6e3c36325e3476aa845b
|
3 |
+
size 114460
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e4959055afcb1760e6aa9d920b0072e201a1e15a32224107646b72f89a68289
|
3 |
+
size 1698
|