--- library_name: stable-baselines3 tags: - seals/Humanoid-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: SAC results: - metrics: - type: mean_reward value: 151.11 +/- 78.31 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: seals/Humanoid-v0 type: seals/Humanoid-v0 --- # **SAC** Agent playing **seals/Humanoid-v0** This is a trained model of a **SAC** agent playing **seals/Humanoid-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo sac --env seals/Humanoid-v0 -orga HumanCompatibleAI -f logs/ python enjoy.py --algo sac --env seals/Humanoid-v0 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo sac --env seals/Humanoid-v0 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo sac --env seals/Humanoid-v0 -f logs/ -orga HumanCompatibleAI ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 100000), ('gamma', 0.98), ('learning_rate', 4.426351861707874e-05), ('learning_starts', 20000), ('n_timesteps', 2000000.0), ('policy', 'MlpPolicy'), ('policy_kwargs', 'dict(net_arch=[400, 300], log_std_init=-0.1034412732183072)'), ('tau', 0.08), ('train_freq', 8), ('normalize', False)]) ```