HussienAhmad
commited on
Commit
•
264f56a
1
Parent(s):
de3df47
Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +968 -3
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +11 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,968 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: sentence-transformers/all-MiniLM-L6-v2
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: Good morning
|
14 |
+
- text: how does the recommendation system work on this platform
|
15 |
+
- text: who are you
|
16 |
+
- text: where is the search bar
|
17 |
+
- text: how can I find courses related to programming
|
18 |
+
inference: true
|
19 |
+
model-index:
|
20 |
+
- name: SetFit with sentence-transformers/all-MiniLM-L6-v2
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-classification
|
24 |
+
name: Text Classification
|
25 |
+
dataset:
|
26 |
+
name: Unknown
|
27 |
+
type: unknown
|
28 |
+
split: test
|
29 |
+
metrics:
|
30 |
+
- type: accuracy
|
31 |
+
value: 0.8333333333333334
|
32 |
+
name: Accuracy
|
33 |
+
---
|
34 |
+
|
35 |
+
# SetFit with sentence-transformers/all-MiniLM-L6-v2
|
36 |
+
|
37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
38 |
+
|
39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
40 |
+
|
41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** SetFit
|
48 |
+
- **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
|
49 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
50 |
+
- **Maximum Sequence Length:** 256 tokens
|
51 |
+
- **Number of Classes:** 6 classes
|
52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
+
|
62 |
+
### Model Labels
|
63 |
+
| Label | Examples |
|
64 |
+
|:--------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
+
| general-questions | <ul><li>'can you explain the concept of cloud computing'</li><li>'how do I assess my skills after completing a course'</li><li>'what is the significance of feedback in online learning'</li></ul> |
|
66 |
+
| website-information | <ul><li>'how to access the dashboard'</li><li>'where can I see my completed courses'</li><li>'where can I find notifications'</li></ul> |
|
67 |
+
| greet-who_are_you | <ul><li>"pourquoi j'ai besoin de toi"</li><li>'help please'</li><li>'I can not understand you'</li></ul> |
|
68 |
+
| recommendations | <ul><li>'how do I get recommendations based on my interests'</li><li>'can you recommend advanced courses in data science'</li><li>'what courses are trending in web development'</li></ul> |
|
69 |
+
| greet-hi | <ul><li>'Hey'</li><li>'Bonsoir'</li><li>'Salut'</li></ul> |
|
70 |
+
| greet-good_bye | <ul><li>'sortir'</li><li>'A plus tard'</li><li>'See you later'</li></ul> |
|
71 |
+
|
72 |
+
## Evaluation
|
73 |
+
|
74 |
+
### Metrics
|
75 |
+
| Label | Accuracy |
|
76 |
+
|:--------|:---------|
|
77 |
+
| **all** | 0.8333 |
|
78 |
+
|
79 |
+
## Uses
|
80 |
+
|
81 |
+
### Direct Use for Inference
|
82 |
+
|
83 |
+
First install the SetFit library:
|
84 |
+
|
85 |
+
```bash
|
86 |
+
pip install setfit
|
87 |
+
```
|
88 |
+
|
89 |
+
Then you can load this model and run inference.
|
90 |
+
|
91 |
+
```python
|
92 |
+
from setfit import SetFitModel
|
93 |
+
|
94 |
+
# Download from the 🤗 Hub
|
95 |
+
model = SetFitModel.from_pretrained("HussienAhmad/SFT_GradProject")
|
96 |
+
# Run inference
|
97 |
+
preds = model("who are you")
|
98 |
+
```
|
99 |
+
|
100 |
+
<!--
|
101 |
+
### Downstream Use
|
102 |
+
|
103 |
+
*List how someone could finetune this model on their own dataset.*
|
104 |
+
-->
|
105 |
+
|
106 |
+
<!--
|
107 |
+
### Out-of-Scope Use
|
108 |
+
|
109 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
110 |
+
-->
|
111 |
+
|
112 |
+
<!--
|
113 |
+
## Bias, Risks and Limitations
|
114 |
+
|
115 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
116 |
+
-->
|
117 |
+
|
118 |
+
<!--
|
119 |
+
### Recommendations
|
120 |
+
|
121 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
122 |
+
-->
|
123 |
+
|
124 |
+
## Training Details
|
125 |
+
|
126 |
+
### Training Set Metrics
|
127 |
+
| Training set | Min | Median | Max |
|
128 |
+
|:-------------|:----|:-------|:----|
|
129 |
+
| Word count | 1 | 6.2 | 11 |
|
130 |
+
|
131 |
+
| Label | Training Sample Count |
|
132 |
+
|:--------------------|:----------------------|
|
133 |
+
| greet-hi | 5 |
|
134 |
+
| greet-who_are_you | 7 |
|
135 |
+
| greet-good_bye | 5 |
|
136 |
+
| general-questions | 28 |
|
137 |
+
| recommendations | 27 |
|
138 |
+
| website-information | 28 |
|
139 |
+
|
140 |
+
### Training Hyperparameters
|
141 |
+
- batch_size: (4, 4)
|
142 |
+
- num_epochs: (4, 4)
|
143 |
+
- max_steps: -1
|
144 |
+
- sampling_strategy: oversampling
|
145 |
+
- body_learning_rate: (2e-05, 1e-05)
|
146 |
+
- head_learning_rate: 0.01
|
147 |
+
- loss: CosineSimilarityLoss
|
148 |
+
- distance_metric: cosine_distance
|
149 |
+
- margin: 0.25
|
150 |
+
- end_to_end: False
|
151 |
+
- use_amp: False
|
152 |
+
- warmup_proportion: 0.1
|
153 |
+
- seed: 42
|
154 |
+
- eval_max_steps: -1
|
155 |
+
- load_best_model_at_end: True
|
156 |
+
|
157 |
+
### Training Results
|
158 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
159 |
+
|:-------:|:--------:|:-------------:|:---------------:|
|
160 |
+
| 0.0005 | 1 | 0.3442 | - |
|
161 |
+
| 0.0053 | 10 | 0.2974 | - |
|
162 |
+
| 0.0105 | 20 | 0.1983 | - |
|
163 |
+
| 0.0158 | 30 | 0.0645 | - |
|
164 |
+
| 0.0210 | 40 | 0.3592 | - |
|
165 |
+
| 0.0263 | 50 | 0.0033 | - |
|
166 |
+
| 0.0316 | 60 | 0.2558 | - |
|
167 |
+
| 0.0368 | 70 | 0.2319 | - |
|
168 |
+
| 0.0421 | 80 | 0.3831 | - |
|
169 |
+
| 0.0473 | 90 | 0.1864 | - |
|
170 |
+
| 0.0526 | 100 | 0.2244 | - |
|
171 |
+
| 0.0579 | 110 | 0.2316 | - |
|
172 |
+
| 0.0631 | 120 | 0.3702 | - |
|
173 |
+
| 0.0684 | 130 | 0.0582 | - |
|
174 |
+
| 0.0736 | 140 | 0.1031 | - |
|
175 |
+
| 0.0789 | 150 | 0.2882 | - |
|
176 |
+
| 0.0842 | 160 | 0.1125 | - |
|
177 |
+
| 0.0894 | 170 | 0.1588 | - |
|
178 |
+
| 0.0947 | 180 | 0.1672 | - |
|
179 |
+
| 0.0999 | 190 | 0.0974 | - |
|
180 |
+
| 0.1052 | 200 | 0.1789 | - |
|
181 |
+
| 0.1105 | 210 | 0.1032 | - |
|
182 |
+
| 0.1157 | 220 | 0.1344 | - |
|
183 |
+
| 0.1210 | 230 | 0.0952 | - |
|
184 |
+
| 0.1262 | 240 | 0.0891 | - |
|
185 |
+
| 0.1315 | 250 | 0.4312 | - |
|
186 |
+
| 0.1368 | 260 | 0.0871 | - |
|
187 |
+
| 0.1420 | 270 | 0.1482 | - |
|
188 |
+
| 0.1473 | 280 | 0.0645 | - |
|
189 |
+
| 0.1526 | 290 | 0.1214 | - |
|
190 |
+
| 0.1578 | 300 | 0.186 | - |
|
191 |
+
| 0.1631 | 310 | 0.0516 | - |
|
192 |
+
| 0.1683 | 320 | 0.0761 | - |
|
193 |
+
| 0.1736 | 330 | 0.0263 | - |
|
194 |
+
| 0.1789 | 340 | 0.0588 | - |
|
195 |
+
| 0.1841 | 350 | 0.016 | - |
|
196 |
+
| 0.1894 | 360 | 0.0264 | - |
|
197 |
+
| 0.1946 | 370 | 0.0153 | - |
|
198 |
+
| 0.1999 | 380 | 0.0091 | - |
|
199 |
+
| 0.2052 | 390 | 0.0347 | - |
|
200 |
+
| 0.2104 | 400 | 0.0095 | - |
|
201 |
+
| 0.2157 | 410 | 0.0262 | - |
|
202 |
+
| 0.2209 | 420 | 0.0182 | - |
|
203 |
+
| 0.2262 | 430 | 0.1407 | - |
|
204 |
+
| 0.2315 | 440 | 0.1451 | - |
|
205 |
+
| 0.2367 | 450 | 0.0045 | - |
|
206 |
+
| 0.2420 | 460 | 0.0053 | - |
|
207 |
+
| 0.2472 | 470 | 0.0038 | - |
|
208 |
+
| 0.2525 | 480 | 0.1549 | - |
|
209 |
+
| 0.2578 | 490 | 0.0036 | - |
|
210 |
+
| 0.2630 | 500 | 0.0079 | - |
|
211 |
+
| 0.2683 | 510 | 0.0065 | - |
|
212 |
+
| 0.2735 | 520 | 0.005 | - |
|
213 |
+
| 0.2788 | 530 | 0.0038 | - |
|
214 |
+
| 0.2841 | 540 | 0.0283 | - |
|
215 |
+
| 0.2893 | 550 | 0.0114 | - |
|
216 |
+
| 0.2946 | 560 | 0.0012 | - |
|
217 |
+
| 0.2998 | 570 | 0.0165 | - |
|
218 |
+
| 0.3051 | 580 | 0.0009 | - |
|
219 |
+
| 0.3104 | 590 | 0.038 | - |
|
220 |
+
| 0.3156 | 600 | 0.0127 | - |
|
221 |
+
| 0.3209 | 610 | 0.0019 | - |
|
222 |
+
| 0.3261 | 620 | 0.003 | - |
|
223 |
+
| 0.3314 | 630 | 0.0013 | - |
|
224 |
+
| 0.3367 | 640 | 0.0024 | - |
|
225 |
+
| 0.3419 | 650 | 0.002 | - |
|
226 |
+
| 0.3472 | 660 | 0.0017 | - |
|
227 |
+
| 0.3524 | 670 | 0.0074 | - |
|
228 |
+
| 0.3577 | 680 | 0.0008 | - |
|
229 |
+
| 0.3630 | 690 | 0.0015 | - |
|
230 |
+
| 0.3682 | 700 | 0.0018 | - |
|
231 |
+
| 0.3735 | 710 | 0.0009 | - |
|
232 |
+
| 0.3787 | 720 | 0.0019 | - |
|
233 |
+
| 0.3840 | 730 | 0.0032 | - |
|
234 |
+
| 0.3893 | 740 | 0.001 | - |
|
235 |
+
| 0.3945 | 750 | 0.0257 | - |
|
236 |
+
| 0.3998 | 760 | 0.0018 | - |
|
237 |
+
| 0.4050 | 770 | 0.001 | - |
|
238 |
+
| 0.4103 | 780 | 0.0006 | - |
|
239 |
+
| 0.4156 | 790 | 0.0014 | - |
|
240 |
+
| 0.4208 | 800 | 0.0012 | - |
|
241 |
+
| 0.4261 | 810 | 0.018 | - |
|
242 |
+
| 0.4314 | 820 | 0.0013 | - |
|
243 |
+
| 0.4366 | 830 | 0.0019 | - |
|
244 |
+
| 0.4419 | 840 | 0.0006 | - |
|
245 |
+
| 0.4471 | 850 | 0.0012 | - |
|
246 |
+
| 0.4524 | 860 | 0.0011 | - |
|
247 |
+
| 0.4577 | 870 | 0.001 | - |
|
248 |
+
| 0.4629 | 880 | 0.0017 | - |
|
249 |
+
| 0.4682 | 890 | 0.002 | - |
|
250 |
+
| 0.4734 | 900 | 0.0009 | - |
|
251 |
+
| 0.4787 | 910 | 0.0026 | - |
|
252 |
+
| 0.4840 | 920 | 0.0009 | - |
|
253 |
+
| 0.4892 | 930 | 0.0019 | - |
|
254 |
+
| 0.4945 | 940 | 0.0018 | - |
|
255 |
+
| 0.4997 | 950 | 0.001 | - |
|
256 |
+
| 0.5050 | 960 | 0.0022 | - |
|
257 |
+
| 0.5103 | 970 | 0.0006 | - |
|
258 |
+
| 0.5155 | 980 | 0.001 | - |
|
259 |
+
| 0.5208 | 990 | 0.0004 | - |
|
260 |
+
| 0.5260 | 1000 | 0.0002 | - |
|
261 |
+
| 0.5313 | 1010 | 0.001 | - |
|
262 |
+
| 0.5366 | 1020 | 0.001 | - |
|
263 |
+
| 0.5418 | 1030 | 0.0019 | - |
|
264 |
+
| 0.5471 | 1040 | 0.0004 | - |
|
265 |
+
| 0.5523 | 1050 | 0.1705 | - |
|
266 |
+
| 0.5576 | 1060 | 0.0006 | - |
|
267 |
+
| 0.5629 | 1070 | 0.0006 | - |
|
268 |
+
| 0.5681 | 1080 | 0.0007 | - |
|
269 |
+
| 0.5734 | 1090 | 0.1562 | - |
|
270 |
+
| 0.5786 | 1100 | 0.0008 | - |
|
271 |
+
| 0.5839 | 1110 | 0.0016 | - |
|
272 |
+
| 0.5892 | 1120 | 0.001 | - |
|
273 |
+
| 0.5944 | 1130 | 0.0003 | - |
|
274 |
+
| 0.5997 | 1140 | 0.0077 | - |
|
275 |
+
| 0.6049 | 1150 | 0.0006 | - |
|
276 |
+
| 0.6102 | 1160 | 0.0008 | - |
|
277 |
+
| 0.6155 | 1170 | 0.0006 | - |
|
278 |
+
| 0.6207 | 1180 | 0.0007 | - |
|
279 |
+
| 0.6260 | 1190 | 0.1438 | - |
|
280 |
+
| 0.6312 | 1200 | 0.0008 | - |
|
281 |
+
| 0.6365 | 1210 | 0.0012 | - |
|
282 |
+
| 0.6418 | 1220 | 0.0005 | - |
|
283 |
+
| 0.6470 | 1230 | 0.0017 | - |
|
284 |
+
| 0.6523 | 1240 | 0.0007 | - |
|
285 |
+
| 0.6575 | 1250 | 0.0004 | - |
|
286 |
+
| 0.6628 | 1260 | 0.0066 | - |
|
287 |
+
| 0.6681 | 1270 | 0.0004 | - |
|
288 |
+
| 0.6733 | 1280 | 0.0002 | - |
|
289 |
+
| 0.6786 | 1290 | 0.1272 | - |
|
290 |
+
| 0.6839 | 1300 | 0.0019 | - |
|
291 |
+
| 0.6891 | 1310 | 0.0014 | - |
|
292 |
+
| 0.6944 | 1320 | 0.0003 | - |
|
293 |
+
| 0.6996 | 1330 | 0.0007 | - |
|
294 |
+
| 0.7049 | 1340 | 0.0003 | - |
|
295 |
+
| 0.7102 | 1350 | 0.0008 | - |
|
296 |
+
| 0.7154 | 1360 | 0.0005 | - |
|
297 |
+
| 0.7207 | 1370 | 0.126 | - |
|
298 |
+
| 0.7259 | 1380 | 0.0003 | - |
|
299 |
+
| 0.7312 | 1390 | 0.0013 | - |
|
300 |
+
| 0.7365 | 1400 | 0.0005 | - |
|
301 |
+
| 0.7417 | 1410 | 0.0003 | - |
|
302 |
+
| 0.7470 | 1420 | 0.0003 | - |
|
303 |
+
| 0.7522 | 1430 | 0.0003 | - |
|
304 |
+
| 0.7575 | 1440 | 0.0005 | - |
|
305 |
+
| 0.7628 | 1450 | 0.0009 | - |
|
306 |
+
| 0.7680 | 1460 | 0.0008 | - |
|
307 |
+
| 0.7733 | 1470 | 0.0002 | - |
|
308 |
+
| 0.7785 | 1480 | 0.0003 | - |
|
309 |
+
| 0.7838 | 1490 | 0.0007 | - |
|
310 |
+
| 0.7891 | 1500 | 0.0064 | - |
|
311 |
+
| 0.7943 | 1510 | 0.0004 | - |
|
312 |
+
| 0.7996 | 1520 | 0.0006 | - |
|
313 |
+
| 0.8048 | 1530 | 0.0003 | - |
|
314 |
+
| 0.8101 | 1540 | 0.0005 | - |
|
315 |
+
| 0.8154 | 1550 | 0.0006 | - |
|
316 |
+
| 0.8206 | 1560 | 0.0005 | - |
|
317 |
+
| 0.8259 | 1570 | 0.0004 | - |
|
318 |
+
| 0.8311 | 1580 | 0.0007 | - |
|
319 |
+
| 0.8364 | 1590 | 0.0006 | - |
|
320 |
+
| 0.8417 | 1600 | 0.0002 | - |
|
321 |
+
| 0.8469 | 1610 | 0.0007 | - |
|
322 |
+
| 0.8522 | 1620 | 0.0002 | - |
|
323 |
+
| 0.8574 | 1630 | 0.0005 | - |
|
324 |
+
| 0.8627 | 1640 | 0.0035 | - |
|
325 |
+
| 0.8680 | 1650 | 0.0004 | - |
|
326 |
+
| 0.8732 | 1660 | 0.0025 | - |
|
327 |
+
| 0.8785 | 1670 | 0.0005 | - |
|
328 |
+
| 0.8837 | 1680 | 0.0021 | - |
|
329 |
+
| 0.8890 | 1690 | 0.0003 | - |
|
330 |
+
| 0.8943 | 1700 | 0.0018 | - |
|
331 |
+
| 0.8995 | 1710 | 0.0004 | - |
|
332 |
+
| 0.9048 | 1720 | 0.0002 | - |
|
333 |
+
| 0.9100 | 1730 | 0.0003 | - |
|
334 |
+
| 0.9153 | 1740 | 0.0006 | - |
|
335 |
+
| 0.9206 | 1750 | 0.0002 | - |
|
336 |
+
| 0.9258 | 1760 | 0.0003 | - |
|
337 |
+
| 0.9311 | 1770 | 0.0004 | - |
|
338 |
+
| 0.9363 | 1780 | 0.0004 | - |
|
339 |
+
| 0.9416 | 1790 | 0.0004 | - |
|
340 |
+
| 0.9469 | 1800 | 0.0006 | - |
|
341 |
+
| 0.9521 | 1810 | 0.0007 | - |
|
342 |
+
| 0.9574 | 1820 | 0.001 | - |
|
343 |
+
| 0.9627 | 1830 | 0.0003 | - |
|
344 |
+
| 0.9679 | 1840 | 0.0009 | - |
|
345 |
+
| 0.9732 | 1850 | 0.0001 | - |
|
346 |
+
| 0.9784 | 1860 | 0.0006 | - |
|
347 |
+
| 0.9837 | 1870 | 0.0002 | - |
|
348 |
+
| 0.9890 | 1880 | 0.0003 | - |
|
349 |
+
| 0.9942 | 1890 | 0.0004 | - |
|
350 |
+
| 0.9995 | 1900 | 0.0009 | - |
|
351 |
+
| 1.0 | 1901 | - | 0.0347 |
|
352 |
+
| 1.0047 | 1910 | 0.0004 | - |
|
353 |
+
| 1.0100 | 1920 | 0.0004 | - |
|
354 |
+
| 1.0153 | 1930 | 0.0005 | - |
|
355 |
+
| 1.0205 | 1940 | 0.0007 | - |
|
356 |
+
| 1.0258 | 1950 | 0.0085 | - |
|
357 |
+
| 1.0310 | 1960 | 0.0003 | - |
|
358 |
+
| 1.0363 | 1970 | 0.0003 | - |
|
359 |
+
| 1.0416 | 1980 | 0.0002 | - |
|
360 |
+
| 1.0468 | 1990 | 0.0009 | - |
|
361 |
+
| 1.0521 | 2000 | 0.0002 | - |
|
362 |
+
| 1.0573 | 2010 | 0.0059 | - |
|
363 |
+
| 1.0626 | 2020 | 0.0007 | - |
|
364 |
+
| 1.0679 | 2030 | 0.0008 | - |
|
365 |
+
| 1.0731 | 2040 | 0.0002 | - |
|
366 |
+
| 1.0784 | 2050 | 0.0002 | - |
|
367 |
+
| 1.0836 | 2060 | 0.0003 | - |
|
368 |
+
| 1.0889 | 2070 | 0.0003 | - |
|
369 |
+
| 1.0942 | 2080 | 0.0002 | - |
|
370 |
+
| 1.0994 | 2090 | 0.0003 | - |
|
371 |
+
| 1.1047 | 2100 | 0.0002 | - |
|
372 |
+
| 1.1099 | 2110 | 0.0065 | - |
|
373 |
+
| 1.1152 | 2120 | 0.0006 | - |
|
374 |
+
| 1.1205 | 2130 | 0.0004 | - |
|
375 |
+
| 1.1257 | 2140 | 0.0035 | - |
|
376 |
+
| 1.1310 | 2150 | 0.0003 | - |
|
377 |
+
| 1.1362 | 2160 | 0.0002 | - |
|
378 |
+
| 1.1415 | 2170 | 0.0002 | - |
|
379 |
+
| 1.1468 | 2180 | 0.0002 | - |
|
380 |
+
| 1.1520 | 2190 | 0.001 | - |
|
381 |
+
| 1.1573 | 2200 | 0.0003 | - |
|
382 |
+
| 1.1625 | 2210 | 0.0002 | - |
|
383 |
+
| 1.1678 | 2220 | 0.0002 | - |
|
384 |
+
| 1.1731 | 2230 | 0.0002 | - |
|
385 |
+
| 1.1783 | 2240 | 0.0003 | - |
|
386 |
+
| 1.1836 | 2250 | 0.0002 | - |
|
387 |
+
| 1.1888 | 2260 | 0.0008 | - |
|
388 |
+
| 1.1941 | 2270 | 0.0002 | - |
|
389 |
+
| 1.1994 | 2280 | 0.0018 | - |
|
390 |
+
| 1.2046 | 2290 | 0.0001 | - |
|
391 |
+
| 1.2099 | 2300 | 0.0002 | - |
|
392 |
+
| 1.2151 | 2310 | 0.0005 | - |
|
393 |
+
| 1.2204 | 2320 | 0.0008 | - |
|
394 |
+
| 1.2257 | 2330 | 0.0002 | - |
|
395 |
+
| 1.2309 | 2340 | 0.0003 | - |
|
396 |
+
| 1.2362 | 2350 | 0.0002 | - |
|
397 |
+
| 1.2415 | 2360 | 0.0003 | - |
|
398 |
+
| 1.2467 | 2370 | 0.0001 | - |
|
399 |
+
| 1.2520 | 2380 | 0.0002 | - |
|
400 |
+
| 1.2572 | 2390 | 0.0002 | - |
|
401 |
+
| 1.2625 | 2400 | 0.0002 | - |
|
402 |
+
| 1.2678 | 2410 | 0.0003 | - |
|
403 |
+
| 1.2730 | 2420 | 0.0002 | - |
|
404 |
+
| 1.2783 | 2430 | 0.0002 | - |
|
405 |
+
| 1.2835 | 2440 | 0.0002 | - |
|
406 |
+
| 1.2888 | 2450 | 0.0003 | - |
|
407 |
+
| 1.2941 | 2460 | 0.0004 | - |
|
408 |
+
| 1.2993 | 2470 | 0.0002 | - |
|
409 |
+
| 1.3046 | 2480 | 0.0002 | - |
|
410 |
+
| 1.3098 | 2490 | 0.0006 | - |
|
411 |
+
| 1.3151 | 2500 | 0.0002 | - |
|
412 |
+
| 1.3204 | 2510 | 0.0002 | - |
|
413 |
+
| 1.3256 | 2520 | 0.0001 | - |
|
414 |
+
| 1.3309 | 2530 | 0.0037 | - |
|
415 |
+
| 1.3361 | 2540 | 0.0004 | - |
|
416 |
+
| 1.3414 | 2550 | 0.0003 | - |
|
417 |
+
| 1.3467 | 2560 | 0.0001 | - |
|
418 |
+
| 1.3519 | 2570 | 0.0001 | - |
|
419 |
+
| 1.3572 | 2580 | 0.0003 | - |
|
420 |
+
| 1.3624 | 2590 | 0.0002 | - |
|
421 |
+
| 1.3677 | 2600 | 0.0003 | - |
|
422 |
+
| 1.3730 | 2610 | 0.0003 | - |
|
423 |
+
| 1.3782 | 2620 | 0.0003 | - |
|
424 |
+
| 1.3835 | 2630 | 0.0003 | - |
|
425 |
+
| 1.3887 | 2640 | 0.0002 | - |
|
426 |
+
| 1.3940 | 2650 | 0.0034 | - |
|
427 |
+
| 1.3993 | 2660 | 0.0002 | - |
|
428 |
+
| 1.4045 | 2670 | 0.0004 | - |
|
429 |
+
| 1.4098 | 2680 | 0.0004 | - |
|
430 |
+
| 1.4150 | 2690 | 0.0003 | - |
|
431 |
+
| 1.4203 | 2700 | 0.0003 | - |
|
432 |
+
| 1.4256 | 2710 | 0.0007 | - |
|
433 |
+
| 1.4308 | 2720 | 0.0002 | - |
|
434 |
+
| 1.4361 | 2730 | 0.0004 | - |
|
435 |
+
| 1.4413 | 2740 | 0.0004 | - |
|
436 |
+
| 1.4466 | 2750 | 0.0005 | - |
|
437 |
+
| 1.4519 | 2760 | 0.0003 | - |
|
438 |
+
| 1.4571 | 2770 | 0.0003 | - |
|
439 |
+
| 1.4624 | 2780 | 0.0005 | - |
|
440 |
+
| 1.4676 | 2790 | 0.0015 | - |
|
441 |
+
| 1.4729 | 2800 | 0.0005 | - |
|
442 |
+
| 1.4782 | 2810 | 0.0003 | - |
|
443 |
+
| 1.4834 | 2820 | 0.0003 | - |
|
444 |
+
| 1.4887 | 2830 | 0.0002 | - |
|
445 |
+
| 1.4940 | 2840 | 0.0003 | - |
|
446 |
+
| 1.4992 | 2850 | 0.0004 | - |
|
447 |
+
| 1.5045 | 2860 | 0.0025 | - |
|
448 |
+
| 1.5097 | 2870 | 0.0001 | - |
|
449 |
+
| 1.5150 | 2880 | 0.0002 | - |
|
450 |
+
| 1.5203 | 2890 | 0.0004 | - |
|
451 |
+
| 1.5255 | 2900 | 0.0001 | - |
|
452 |
+
| 1.5308 | 2910 | 0.0003 | - |
|
453 |
+
| 1.5360 | 2920 | 0.0006 | - |
|
454 |
+
| 1.5413 | 2930 | 0.0001 | - |
|
455 |
+
| 1.5466 | 2940 | 0.0001 | - |
|
456 |
+
| 1.5518 | 2950 | 0.0004 | - |
|
457 |
+
| 1.5571 | 2960 | 0.0002 | - |
|
458 |
+
| 1.5623 | 2970 | 0.0006 | - |
|
459 |
+
| 1.5676 | 2980 | 0.0003 | - |
|
460 |
+
| 1.5729 | 2990 | 0.001 | - |
|
461 |
+
| 1.5781 | 3000 | 0.0003 | - |
|
462 |
+
| 1.5834 | 3010 | 0.0002 | - |
|
463 |
+
| 1.5886 | 3020 | 0.0003 | - |
|
464 |
+
| 1.5939 | 3030 | 0.0002 | - |
|
465 |
+
| 1.5992 | 3040 | 0.0001 | - |
|
466 |
+
| 1.6044 | 3050 | 0.0002 | - |
|
467 |
+
| 1.6097 | 3060 | 0.0002 | - |
|
468 |
+
| 1.6149 | 3070 | 0.0002 | - |
|
469 |
+
| 1.6202 | 3080 | 0.0001 | - |
|
470 |
+
| 1.6255 | 3090 | 0.0002 | - |
|
471 |
+
| 1.6307 | 3100 | 0.0002 | - |
|
472 |
+
| 1.6360 | 3110 | 0.0001 | - |
|
473 |
+
| 1.6412 | 3120 | 0.0001 | - |
|
474 |
+
| 1.6465 | 3130 | 0.0002 | - |
|
475 |
+
| 1.6518 | 3140 | 0.0003 | - |
|
476 |
+
| 1.6570 | 3150 | 0.0002 | - |
|
477 |
+
| 1.6623 | 3160 | 0.0002 | - |
|
478 |
+
| 1.6675 | 3170 | 0.0001 | - |
|
479 |
+
| 1.6728 | 3180 | 0.0002 | - |
|
480 |
+
| 1.6781 | 3190 | 0.0002 | - |
|
481 |
+
| 1.6833 | 3200 | 0.0008 | - |
|
482 |
+
| 1.6886 | 3210 | 0.0002 | - |
|
483 |
+
| 1.6938 | 3220 | 0.0003 | - |
|
484 |
+
| 1.6991 | 3230 | 0.0001 | - |
|
485 |
+
| 1.7044 | 3240 | 0.0001 | - |
|
486 |
+
| 1.7096 | 3250 | 0.0001 | - |
|
487 |
+
| 1.7149 | 3260 | 0.0002 | - |
|
488 |
+
| 1.7201 | 3270 | 0.0003 | - |
|
489 |
+
| 1.7254 | 3280 | 0.0001 | - |
|
490 |
+
| 1.7307 | 3290 | 0.0003 | - |
|
491 |
+
| 1.7359 | 3300 | 0.0001 | - |
|
492 |
+
| 1.7412 | 3310 | 0.0003 | - |
|
493 |
+
| 1.7464 | 3320 | 0.0002 | - |
|
494 |
+
| 1.7517 | 3330 | 0.0002 | - |
|
495 |
+
| 1.7570 | 3340 | 0.0001 | - |
|
496 |
+
| 1.7622 | 3350 | 0.0002 | - |
|
497 |
+
| 1.7675 | 3360 | 0.0001 | - |
|
498 |
+
| 1.7728 | 3370 | 0.0005 | - |
|
499 |
+
| 1.7780 | 3380 | 0.0001 | - |
|
500 |
+
| 1.7833 | 3390 | 0.0003 | - |
|
501 |
+
| 1.7885 | 3400 | 0.0002 | - |
|
502 |
+
| 1.7938 | 3410 | 0.0003 | - |
|
503 |
+
| 1.7991 | 3420 | 0.0002 | - |
|
504 |
+
| 1.8043 | 3430 | 0.0002 | - |
|
505 |
+
| 1.8096 | 3440 | 0.0009 | - |
|
506 |
+
| 1.8148 | 3450 | 0.0001 | - |
|
507 |
+
| 1.8201 | 3460 | 0.0005 | - |
|
508 |
+
| 1.8254 | 3470 | 0.0002 | - |
|
509 |
+
| 1.8306 | 3480 | 0.0004 | - |
|
510 |
+
| 1.8359 | 3490 | 0.0002 | - |
|
511 |
+
| 1.8411 | 3500 | 0.0001 | - |
|
512 |
+
| 1.8464 | 3510 | 0.0001 | - |
|
513 |
+
| 1.8517 | 3520 | 0.0003 | - |
|
514 |
+
| 1.8569 | 3530 | 0.0001 | - |
|
515 |
+
| 1.8622 | 3540 | 0.0002 | - |
|
516 |
+
| 1.8674 | 3550 | 0.0002 | - |
|
517 |
+
| 1.8727 | 3560 | 0.0011 | - |
|
518 |
+
| 1.8780 | 3570 | 0.0003 | - |
|
519 |
+
| 1.8832 | 3580 | 0.0003 | - |
|
520 |
+
| 1.8885 | 3590 | 0.0002 | - |
|
521 |
+
| 1.8937 | 3600 | 0.0001 | - |
|
522 |
+
| 1.8990 | 3610 | 0.0001 | - |
|
523 |
+
| 1.9043 | 3620 | 0.0002 | - |
|
524 |
+
| 1.9095 | 3630 | 0.0001 | - |
|
525 |
+
| 1.9148 | 3640 | 0.0002 | - |
|
526 |
+
| 1.9200 | 3650 | 0.0002 | - |
|
527 |
+
| 1.9253 | 3660 | 0.0002 | - |
|
528 |
+
| 1.9306 | 3670 | 0.0002 | - |
|
529 |
+
| 1.9358 | 3680 | 0.0001 | - |
|
530 |
+
| 1.9411 | 3690 | 0.0002 | - |
|
531 |
+
| 1.9463 | 3700 | 0.0003 | - |
|
532 |
+
| 1.9516 | 3710 | 0.0006 | - |
|
533 |
+
| 1.9569 | 3720 | 0.0004 | - |
|
534 |
+
| 1.9621 | 3730 | 0.0001 | - |
|
535 |
+
| 1.9674 | 3740 | 0.0002 | - |
|
536 |
+
| 1.9726 | 3750 | 0.0004 | - |
|
537 |
+
| 1.9779 | 3760 | 0.0002 | - |
|
538 |
+
| 1.9832 | 3770 | 0.0004 | - |
|
539 |
+
| 1.9884 | 3780 | 0.0003 | - |
|
540 |
+
| 1.9937 | 3790 | 0.0002 | - |
|
541 |
+
| 1.9989 | 3800 | 0.0002 | - |
|
542 |
+
| 2.0 | 3802 | - | 0.0333 |
|
543 |
+
| 2.0042 | 3810 | 0.0001 | - |
|
544 |
+
| 2.0095 | 3820 | 0.0002 | - |
|
545 |
+
| 2.0147 | 3830 | 0.0004 | - |
|
546 |
+
| 2.0200 | 3840 | 0.0005 | - |
|
547 |
+
| 2.0252 | 3850 | 0.0002 | - |
|
548 |
+
| 2.0305 | 3860 | 0.0001 | - |
|
549 |
+
| 2.0358 | 3870 | 0.0005 | - |
|
550 |
+
| 2.0410 | 3880 | 0.0002 | - |
|
551 |
+
| 2.0463 | 3890 | 0.0002 | - |
|
552 |
+
| 2.0516 | 3900 | 0.0002 | - |
|
553 |
+
| 2.0568 | 3910 | 0.0003 | - |
|
554 |
+
| 2.0621 | 3920 | 0.0002 | - |
|
555 |
+
| 2.0673 | 3930 | 0.0005 | - |
|
556 |
+
| 2.0726 | 3940 | 0.0002 | - |
|
557 |
+
| 2.0779 | 3950 | 0.0001 | - |
|
558 |
+
| 2.0831 | 3960 | 0.0001 | - |
|
559 |
+
| 2.0884 | 3970 | 0.0003 | - |
|
560 |
+
| 2.0936 | 3980 | 0.0001 | - |
|
561 |
+
| 2.0989 | 3990 | 0.0002 | - |
|
562 |
+
| 2.1042 | 4000 | 0.0001 | - |
|
563 |
+
| 2.1094 | 4010 | 0.0001 | - |
|
564 |
+
| 2.1147 | 4020 | 0.0001 | - |
|
565 |
+
| 2.1199 | 4030 | 0.0004 | - |
|
566 |
+
| 2.1252 | 4040 | 0.0002 | - |
|
567 |
+
| 2.1305 | 4050 | 0.0003 | - |
|
568 |
+
| 2.1357 | 4060 | 0.0002 | - |
|
569 |
+
| 2.1410 | 4070 | 0.0001 | - |
|
570 |
+
| 2.1462 | 4080 | 0.0001 | - |
|
571 |
+
| 2.1515 | 4090 | 0.0001 | - |
|
572 |
+
| 2.1568 | 4100 | 0.0001 | - |
|
573 |
+
| 2.1620 | 4110 | 0.0001 | - |
|
574 |
+
| 2.1673 | 4120 | 0.0001 | - |
|
575 |
+
| 2.1725 | 4130 | 0.0001 | - |
|
576 |
+
| 2.1778 | 4140 | 0.0001 | - |
|
577 |
+
| 2.1831 | 4150 | 0.0009 | - |
|
578 |
+
| 2.1883 | 4160 | 0.0001 | - |
|
579 |
+
| 2.1936 | 4170 | 0.0003 | - |
|
580 |
+
| 2.1988 | 4180 | 0.0001 | - |
|
581 |
+
| 2.2041 | 4190 | 0.0002 | - |
|
582 |
+
| 2.2094 | 4200 | 0.0003 | - |
|
583 |
+
| 2.2146 | 4210 | 0.0008 | - |
|
584 |
+
| 2.2199 | 4220 | 0.0002 | - |
|
585 |
+
| 2.2251 | 4230 | 0.0004 | - |
|
586 |
+
| 2.2304 | 4240 | 0.0002 | - |
|
587 |
+
| 2.2357 | 4250 | 0.0001 | - |
|
588 |
+
| 2.2409 | 4260 | 0.0004 | - |
|
589 |
+
| 2.2462 | 4270 | 0.0001 | - |
|
590 |
+
| 2.2514 | 4280 | 0.0001 | - |
|
591 |
+
| 2.2567 | 4290 | 0.0001 | - |
|
592 |
+
| 2.2620 | 4300 | 0.0001 | - |
|
593 |
+
| 2.2672 | 4310 | 0.0002 | - |
|
594 |
+
| 2.2725 | 4320 | 0.0002 | - |
|
595 |
+
| 2.2777 | 4330 | 0.0002 | - |
|
596 |
+
| 2.2830 | 4340 | 0.0002 | - |
|
597 |
+
| 2.2883 | 4350 | 0.0001 | - |
|
598 |
+
| 2.2935 | 4360 | 0.0001 | - |
|
599 |
+
| 2.2988 | 4370 | 0.0001 | - |
|
600 |
+
| 2.3041 | 4380 | 0.0004 | - |
|
601 |
+
| 2.3093 | 4390 | 0.0002 | - |
|
602 |
+
| 2.3146 | 4400 | 0.0001 | - |
|
603 |
+
| 2.3198 | 4410 | 0.0004 | - |
|
604 |
+
| 2.3251 | 4420 | 0.0001 | - |
|
605 |
+
| 2.3304 | 4430 | 0.0001 | - |
|
606 |
+
| 2.3356 | 4440 | 0.0001 | - |
|
607 |
+
| 2.3409 | 4450 | 0.0001 | - |
|
608 |
+
| 2.3461 | 4460 | 0.0001 | - |
|
609 |
+
| 2.3514 | 4470 | 0.0002 | - |
|
610 |
+
| 2.3567 | 4480 | 0.0004 | - |
|
611 |
+
| 2.3619 | 4490 | 0.0003 | - |
|
612 |
+
| 2.3672 | 4500 | 0.0002 | - |
|
613 |
+
| 2.3724 | 4510 | 0.0001 | - |
|
614 |
+
| 2.3777 | 4520 | 0.0001 | - |
|
615 |
+
| 2.3830 | 4530 | 0.0001 | - |
|
616 |
+
| 2.3882 | 4540 | 0.0001 | - |
|
617 |
+
| 2.3935 | 4550 | 0.0001 | - |
|
618 |
+
| 2.3987 | 4560 | 0.0002 | - |
|
619 |
+
| 2.4040 | 4570 | 0.0001 | - |
|
620 |
+
| 2.4093 | 4580 | 0.0001 | - |
|
621 |
+
| 2.4145 | 4590 | 0.0001 | - |
|
622 |
+
| 2.4198 | 4600 | 0.0001 | - |
|
623 |
+
| 2.4250 | 4610 | 0.0001 | - |
|
624 |
+
| 2.4303 | 4620 | 0.0008 | - |
|
625 |
+
| 2.4356 | 4630 | 0.0001 | - |
|
626 |
+
| 2.4408 | 4640 | 0.0002 | - |
|
627 |
+
| 2.4461 | 4650 | 0.0001 | - |
|
628 |
+
| 2.4513 | 4660 | 0.0001 | - |
|
629 |
+
| 2.4566 | 4670 | 0.0001 | - |
|
630 |
+
| 2.4619 | 4680 | 0.0001 | - |
|
631 |
+
| 2.4671 | 4690 | 0.0001 | - |
|
632 |
+
| 2.4724 | 4700 | 0.0001 | - |
|
633 |
+
| 2.4776 | 4710 | 0.0001 | - |
|
634 |
+
| 2.4829 | 4720 | 0.0001 | - |
|
635 |
+
| 2.4882 | 4730 | 0.0002 | - |
|
636 |
+
| 2.4934 | 4740 | 0.0001 | - |
|
637 |
+
| 2.4987 | 4750 | 0.0001 | - |
|
638 |
+
| 2.5039 | 4760 | 0.0008 | - |
|
639 |
+
| 2.5092 | 4770 | 0.0002 | - |
|
640 |
+
| 2.5145 | 4780 | 0.0001 | - |
|
641 |
+
| 2.5197 | 4790 | 0.0001 | - |
|
642 |
+
| 2.5250 | 4800 | 0.0007 | - |
|
643 |
+
| 2.5302 | 4810 | 0.0003 | - |
|
644 |
+
| 2.5355 | 4820 | 0.0001 | - |
|
645 |
+
| 2.5408 | 4830 | 0.0001 | - |
|
646 |
+
| 2.5460 | 4840 | 0.0001 | - |
|
647 |
+
| 2.5513 | 4850 | 0.0003 | - |
|
648 |
+
| 2.5565 | 4860 | 0.0001 | - |
|
649 |
+
| 2.5618 | 4870 | 0.0001 | - |
|
650 |
+
| 2.5671 | 4880 | 0.0002 | - |
|
651 |
+
| 2.5723 | 4890 | 0.0001 | - |
|
652 |
+
| 2.5776 | 4900 | 0.0001 | - |
|
653 |
+
| 2.5829 | 4910 | 0.0003 | - |
|
654 |
+
| 2.5881 | 4920 | 0.0001 | - |
|
655 |
+
| 2.5934 | 4930 | 0.0002 | - |
|
656 |
+
| 2.5986 | 4940 | 0.0003 | - |
|
657 |
+
| 2.6039 | 4950 | 0.0001 | - |
|
658 |
+
| 2.6092 | 4960 | 0.0002 | - |
|
659 |
+
| 2.6144 | 4970 | 0.0001 | - |
|
660 |
+
| 2.6197 | 4980 | 0.0002 | - |
|
661 |
+
| 2.6249 | 4990 | 0.0002 | - |
|
662 |
+
| 2.6302 | 5000 | 0.0002 | - |
|
663 |
+
| 2.6355 | 5010 | 0.0004 | - |
|
664 |
+
| 2.6407 | 5020 | 0.0001 | - |
|
665 |
+
| 2.6460 | 5030 | 0.0001 | - |
|
666 |
+
| 2.6512 | 5040 | 0.0004 | - |
|
667 |
+
| 2.6565 | 5050 | 0.0001 | - |
|
668 |
+
| 2.6618 | 5060 | 0.0002 | - |
|
669 |
+
| 2.6670 | 5070 | 0.0014 | - |
|
670 |
+
| 2.6723 | 5080 | 0.0003 | - |
|
671 |
+
| 2.6775 | 5090 | 0.0001 | - |
|
672 |
+
| 2.6828 | 5100 | 0.0003 | - |
|
673 |
+
| 2.6881 | 5110 | 0.0001 | - |
|
674 |
+
| 2.6933 | 5120 | 0.0001 | - |
|
675 |
+
| 2.6986 | 5130 | 0.0009 | - |
|
676 |
+
| 2.7038 | 5140 | 0.0002 | - |
|
677 |
+
| 2.7091 | 5150 | 0.0003 | - |
|
678 |
+
| 2.7144 | 5160 | 0.0001 | - |
|
679 |
+
| 2.7196 | 5170 | 0.0001 | - |
|
680 |
+
| 2.7249 | 5180 | 0.0002 | - |
|
681 |
+
| 2.7301 | 5190 | 0.0001 | - |
|
682 |
+
| 2.7354 | 5200 | 0.0001 | - |
|
683 |
+
| 2.7407 | 5210 | 0.0001 | - |
|
684 |
+
| 2.7459 | 5220 | 0.0002 | - |
|
685 |
+
| 2.7512 | 5230 | 0.0004 | - |
|
686 |
+
| 2.7564 | 5240 | 0.0001 | - |
|
687 |
+
| 2.7617 | 5250 | 0.0001 | - |
|
688 |
+
| 2.7670 | 5260 | 0.0004 | - |
|
689 |
+
| 2.7722 | 5270 | 0.0003 | - |
|
690 |
+
| 2.7775 | 5280 | 0.0002 | - |
|
691 |
+
| 2.7827 | 5290 | 0.0002 | - |
|
692 |
+
| 2.7880 | 5300 | 0.0001 | - |
|
693 |
+
| 2.7933 | 5310 | 0.0003 | - |
|
694 |
+
| 2.7985 | 5320 | 0.0001 | - |
|
695 |
+
| 2.8038 | 5330 | 0.0005 | - |
|
696 |
+
| 2.8090 | 5340 | 0.0001 | - |
|
697 |
+
| 2.8143 | 5350 | 0.0001 | - |
|
698 |
+
| 2.8196 | 5360 | 0.0001 | - |
|
699 |
+
| 2.8248 | 5370 | 0.0001 | - |
|
700 |
+
| 2.8301 | 5380 | 0.0003 | - |
|
701 |
+
| 2.8353 | 5390 | 0.0001 | - |
|
702 |
+
| 2.8406 | 5400 | 0.0008 | - |
|
703 |
+
| 2.8459 | 5410 | 0.0001 | - |
|
704 |
+
| 2.8511 | 5420 | 0.0001 | - |
|
705 |
+
| 2.8564 | 5430 | 0.0001 | - |
|
706 |
+
| 2.8617 | 5440 | 0.0002 | - |
|
707 |
+
| 2.8669 | 5450 | 0.0001 | - |
|
708 |
+
| 2.8722 | 5460 | 0.0004 | - |
|
709 |
+
| 2.8774 | 5470 | 0.0001 | - |
|
710 |
+
| 2.8827 | 5480 | 0.0001 | - |
|
711 |
+
| 2.8880 | 5490 | 0.0002 | - |
|
712 |
+
| 2.8932 | 5500 | 0.0001 | - |
|
713 |
+
| 2.8985 | 5510 | 0.0001 | - |
|
714 |
+
| 2.9037 | 5520 | 0.0001 | - |
|
715 |
+
| 2.9090 | 5530 | 0.0002 | - |
|
716 |
+
| 2.9143 | 5540 | 0.0002 | - |
|
717 |
+
| 2.9195 | 5550 | 0.0001 | - |
|
718 |
+
| 2.9248 | 5560 | 0.0001 | - |
|
719 |
+
| 2.9300 | 5570 | 0.0005 | - |
|
720 |
+
| 2.9353 | 5580 | 0.0002 | - |
|
721 |
+
| 2.9406 | 5590 | 0.0001 | - |
|
722 |
+
| 2.9458 | 5600 | 0.0001 | - |
|
723 |
+
| 2.9511 | 5610 | 0.0003 | - |
|
724 |
+
| 2.9563 | 5620 | 0.0001 | - |
|
725 |
+
| 2.9616 | 5630 | 0.0001 | - |
|
726 |
+
| 2.9669 | 5640 | 0.0001 | - |
|
727 |
+
| 2.9721 | 5650 | 0.0006 | - |
|
728 |
+
| 2.9774 | 5660 | 0.0001 | - |
|
729 |
+
| 2.9826 | 5670 | 0.0001 | - |
|
730 |
+
| 2.9879 | 5680 | 0.0001 | - |
|
731 |
+
| 2.9932 | 5690 | 0.0001 | - |
|
732 |
+
| 2.9984 | 5700 | 0.0001 | - |
|
733 |
+
| 3.0 | 5703 | - | 0.0349 |
|
734 |
+
| 3.0037 | 5710 | 0.0001 | - |
|
735 |
+
| 3.0089 | 5720 | 0.0001 | - |
|
736 |
+
| 3.0142 | 5730 | 0.0002 | - |
|
737 |
+
| 3.0195 | 5740 | 0.0001 | - |
|
738 |
+
| 3.0247 | 5750 | 0.0002 | - |
|
739 |
+
| 3.0300 | 5760 | 0.0001 | - |
|
740 |
+
| 3.0352 | 5770 | 0.0008 | - |
|
741 |
+
| 3.0405 | 5780 | 0.0004 | - |
|
742 |
+
| 3.0458 | 5790 | 0.0003 | - |
|
743 |
+
| 3.0510 | 5800 | 0.0001 | - |
|
744 |
+
| 3.0563 | 5810 | 0.0001 | - |
|
745 |
+
| 3.0615 | 5820 | 0.0006 | - |
|
746 |
+
| 3.0668 | 5830 | 0.0002 | - |
|
747 |
+
| 3.0721 | 5840 | 0.0001 | - |
|
748 |
+
| 3.0773 | 5850 | 0.0002 | - |
|
749 |
+
| 3.0826 | 5860 | 0.0002 | - |
|
750 |
+
| 3.0878 | 5870 | 0.0002 | - |
|
751 |
+
| 3.0931 | 5880 | 0.0002 | - |
|
752 |
+
| 3.0984 | 5890 | 0.0001 | - |
|
753 |
+
| 3.1036 | 5900 | 0.0001 | - |
|
754 |
+
| 3.1089 | 5910 | 0.0001 | - |
|
755 |
+
| 3.1142 | 5920 | 0.0001 | - |
|
756 |
+
| 3.1194 | 5930 | 0.0001 | - |
|
757 |
+
| 3.1247 | 5940 | 0.0001 | - |
|
758 |
+
| 3.1299 | 5950 | 0.0002 | - |
|
759 |
+
| 3.1352 | 5960 | 0.0003 | - |
|
760 |
+
| 3.1405 | 5970 | 0.0003 | - |
|
761 |
+
| 3.1457 | 5980 | 0.0009 | - |
|
762 |
+
| 3.1510 | 5990 | 0.0001 | - |
|
763 |
+
| 3.1562 | 6000 | 0.0001 | - |
|
764 |
+
| 3.1615 | 6010 | 0.0002 | - |
|
765 |
+
| 3.1668 | 6020 | 0.0001 | - |
|
766 |
+
| 3.1720 | 6030 | 0.0001 | - |
|
767 |
+
| 3.1773 | 6040 | 0.0001 | - |
|
768 |
+
| 3.1825 | 6050 | 0.0002 | - |
|
769 |
+
| 3.1878 | 6060 | 0.0001 | - |
|
770 |
+
| 3.1931 | 6070 | 0.0001 | - |
|
771 |
+
| 3.1983 | 6080 | 0.0002 | - |
|
772 |
+
| 3.2036 | 6090 | 0.0001 | - |
|
773 |
+
| 3.2088 | 6100 | 0.0002 | - |
|
774 |
+
| 3.2141 | 6110 | 0.0003 | - |
|
775 |
+
| 3.2194 | 6120 | 0.0001 | - |
|
776 |
+
| 3.2246 | 6130 | 0.0001 | - |
|
777 |
+
| 3.2299 | 6140 | 0.0001 | - |
|
778 |
+
| 3.2351 | 6150 | 0.0001 | - |
|
779 |
+
| 3.2404 | 6160 | 0.0001 | - |
|
780 |
+
| 3.2457 | 6170 | 0.0001 | - |
|
781 |
+
| 3.2509 | 6180 | 0.0001 | - |
|
782 |
+
| 3.2562 | 6190 | 0.0001 | - |
|
783 |
+
| 3.2614 | 6200 | 0.0001 | - |
|
784 |
+
| 3.2667 | 6210 | 0.0002 | - |
|
785 |
+
| 3.2720 | 6220 | 0.0001 | - |
|
786 |
+
| 3.2772 | 6230 | 0.0001 | - |
|
787 |
+
| 3.2825 | 6240 | 0.0001 | - |
|
788 |
+
| 3.2877 | 6250 | 0.0002 | - |
|
789 |
+
| 3.2930 | 6260 | 0.0001 | - |
|
790 |
+
| 3.2983 | 6270 | 0.0001 | - |
|
791 |
+
| 3.3035 | 6280 | 0.0002 | - |
|
792 |
+
| 3.3088 | 6290 | 0.0001 | - |
|
793 |
+
| 3.3140 | 6300 | 0.0001 | - |
|
794 |
+
| 3.3193 | 6310 | 0.0001 | - |
|
795 |
+
| 3.3246 | 6320 | 0.0001 | - |
|
796 |
+
| 3.3298 | 6330 | 0.0 | - |
|
797 |
+
| 3.3351 | 6340 | 0.0003 | - |
|
798 |
+
| 3.3403 | 6350 | 0.0002 | - |
|
799 |
+
| 3.3456 | 6360 | 0.0001 | - |
|
800 |
+
| 3.3509 | 6370 | 0.0001 | - |
|
801 |
+
| 3.3561 | 6380 | 0.0003 | - |
|
802 |
+
| 3.3614 | 6390 | 0.0 | - |
|
803 |
+
| 3.3666 | 6400 | 0.0001 | - |
|
804 |
+
| 3.3719 | 6410 | 0.0001 | - |
|
805 |
+
| 3.3772 | 6420 | 0.0001 | - |
|
806 |
+
| 3.3824 | 6430 | 0.0001 | - |
|
807 |
+
| 3.3877 | 6440 | 0.0001 | - |
|
808 |
+
| 3.3930 | 6450 | 0.0003 | - |
|
809 |
+
| 3.3982 | 6460 | 0.0002 | - |
|
810 |
+
| 3.4035 | 6470 | 0.0001 | - |
|
811 |
+
| 3.4087 | 6480 | 0.0002 | - |
|
812 |
+
| 3.4140 | 6490 | 0.0003 | - |
|
813 |
+
| 3.4193 | 6500 | 0.0 | - |
|
814 |
+
| 3.4245 | 6510 | 0.0001 | - |
|
815 |
+
| 3.4298 | 6520 | 0.0002 | - |
|
816 |
+
| 3.4350 | 6530 | 0.0001 | - |
|
817 |
+
| 3.4403 | 6540 | 0.0001 | - |
|
818 |
+
| 3.4456 | 6550 | 0.0001 | - |
|
819 |
+
| 3.4508 | 6560 | 0.0001 | - |
|
820 |
+
| 3.4561 | 6570 | 0.0001 | - |
|
821 |
+
| 3.4613 | 6580 | 0.0001 | - |
|
822 |
+
| 3.4666 | 6590 | 0.0001 | - |
|
823 |
+
| 3.4719 | 6600 | 0.0001 | - |
|
824 |
+
| 3.4771 | 6610 | 0.0001 | - |
|
825 |
+
| 3.4824 | 6620 | 0.0003 | - |
|
826 |
+
| 3.4876 | 6630 | 0.0001 | - |
|
827 |
+
| 3.4929 | 6640 | 0.0001 | - |
|
828 |
+
| 3.4982 | 6650 | 0.0001 | - |
|
829 |
+
| 3.5034 | 6660 | 0.0002 | - |
|
830 |
+
| 3.5087 | 6670 | 0.0001 | - |
|
831 |
+
| 3.5139 | 6680 | 0.0007 | - |
|
832 |
+
| 3.5192 | 6690 | 0.0004 | - |
|
833 |
+
| 3.5245 | 6700 | 0.0001 | - |
|
834 |
+
| 3.5297 | 6710 | 0.0001 | - |
|
835 |
+
| 3.5350 | 6720 | 0.0001 | - |
|
836 |
+
| 3.5402 | 6730 | 0.0001 | - |
|
837 |
+
| 3.5455 | 6740 | 0.0001 | - |
|
838 |
+
| 3.5508 | 6750 | 0.0001 | - |
|
839 |
+
| 3.5560 | 6760 | 0.0001 | - |
|
840 |
+
| 3.5613 | 6770 | 0.0001 | - |
|
841 |
+
| 3.5665 | 6780 | 0.0001 | - |
|
842 |
+
| 3.5718 | 6790 | 0.0001 | - |
|
843 |
+
| 3.5771 | 6800 | 0.0 | - |
|
844 |
+
| 3.5823 | 6810 | 0.0001 | - |
|
845 |
+
| 3.5876 | 6820 | 0.0001 | - |
|
846 |
+
| 3.5928 | 6830 | 0.0004 | - |
|
847 |
+
| 3.5981 | 6840 | 0.0001 | - |
|
848 |
+
| 3.6034 | 6850 | 0.0001 | - |
|
849 |
+
| 3.6086 | 6860 | 0.0001 | - |
|
850 |
+
| 3.6139 | 6870 | 0.0 | - |
|
851 |
+
| 3.6191 | 6880 | 0.0001 | - |
|
852 |
+
| 3.6244 | 6890 | 0.0001 | - |
|
853 |
+
| 3.6297 | 6900 | 0.0001 | - |
|
854 |
+
| 3.6349 | 6910 | 0.0001 | - |
|
855 |
+
| 3.6402 | 6920 | 0.0002 | - |
|
856 |
+
| 3.6454 | 6930 | 0.0001 | - |
|
857 |
+
| 3.6507 | 6940 | 0.0001 | - |
|
858 |
+
| 3.6560 | 6950 | 0.0 | - |
|
859 |
+
| 3.6612 | 6960 | 0.0 | - |
|
860 |
+
| 3.6665 | 6970 | 0.0001 | - |
|
861 |
+
| 3.6718 | 6980 | 0.0001 | - |
|
862 |
+
| 3.6770 | 6990 | 0.0002 | - |
|
863 |
+
| 3.6823 | 7000 | 0.0001 | - |
|
864 |
+
| 3.6875 | 7010 | 0.0001 | - |
|
865 |
+
| 3.6928 | 7020 | 0.0001 | - |
|
866 |
+
| 3.6981 | 7030 | 0.0001 | - |
|
867 |
+
| 3.7033 | 7040 | 0.0001 | - |
|
868 |
+
| 3.7086 | 7050 | 0.0002 | - |
|
869 |
+
| 3.7138 | 7060 | 0.0001 | - |
|
870 |
+
| 3.7191 | 7070 | 0.0001 | - |
|
871 |
+
| 3.7244 | 7080 | 0.0001 | - |
|
872 |
+
| 3.7296 | 7090 | 0.0001 | - |
|
873 |
+
| 3.7349 | 7100 | 0.0001 | - |
|
874 |
+
| 3.7401 | 7110 | 0.0001 | - |
|
875 |
+
| 3.7454 | 7120 | 0.0001 | - |
|
876 |
+
| 3.7507 | 7130 | 0.0003 | - |
|
877 |
+
| 3.7559 | 7140 | 0.0001 | - |
|
878 |
+
| 3.7612 | 7150 | 0.0001 | - |
|
879 |
+
| 3.7664 | 7160 | 0.0002 | - |
|
880 |
+
| 3.7717 | 7170 | 0.0002 | - |
|
881 |
+
| 3.7770 | 7180 | 0.0001 | - |
|
882 |
+
| 3.7822 | 7190 | 0.0001 | - |
|
883 |
+
| 3.7875 | 7200 | 0.0001 | - |
|
884 |
+
| 3.7927 | 7210 | 0.0003 | - |
|
885 |
+
| 3.7980 | 7220 | 0.0001 | - |
|
886 |
+
| 3.8033 | 7230 | 0.0001 | - |
|
887 |
+
| 3.8085 | 7240 | 0.0001 | - |
|
888 |
+
| 3.8138 | 7250 | 0.0001 | - |
|
889 |
+
| 3.8190 | 7260 | 0.0001 | - |
|
890 |
+
| 3.8243 | 7270 | 0.0002 | - |
|
891 |
+
| 3.8296 | 7280 | 0.0002 | - |
|
892 |
+
| 3.8348 | 7290 | 0.0001 | - |
|
893 |
+
| 3.8401 | 7300 | 0.0001 | - |
|
894 |
+
| 3.8453 | 7310 | 0.0001 | - |
|
895 |
+
| 3.8506 | 7320 | 0.0001 | - |
|
896 |
+
| 3.8559 | 7330 | 0.0001 | - |
|
897 |
+
| 3.8611 | 7340 | 0.0006 | - |
|
898 |
+
| 3.8664 | 7350 | 0.0001 | - |
|
899 |
+
| 3.8716 | 7360 | 0.0001 | - |
|
900 |
+
| 3.8769 | 7370 | 0.0 | - |
|
901 |
+
| 3.8822 | 7380 | 0.0003 | - |
|
902 |
+
| 3.8874 | 7390 | 0.0001 | - |
|
903 |
+
| 3.8927 | 7400 | 0.0001 | - |
|
904 |
+
| 3.8979 | 7410 | 0.0001 | - |
|
905 |
+
| 3.9032 | 7420 | 0.0001 | - |
|
906 |
+
| 3.9085 | 7430 | 0.0002 | - |
|
907 |
+
| 3.9137 | 7440 | 0.0001 | - |
|
908 |
+
| 3.9190 | 7450 | 0.0002 | - |
|
909 |
+
| 3.9243 | 7460 | 0.0001 | - |
|
910 |
+
| 3.9295 | 7470 | 0.0001 | - |
|
911 |
+
| 3.9348 | 7480 | 0.0002 | - |
|
912 |
+
| 3.9400 | 7490 | 0.0001 | - |
|
913 |
+
| 3.9453 | 7500 | 0.0002 | - |
|
914 |
+
| 3.9506 | 7510 | 0.0001 | - |
|
915 |
+
| 3.9558 | 7520 | 0.0001 | - |
|
916 |
+
| 3.9611 | 7530 | 0.0001 | - |
|
917 |
+
| 3.9663 | 7540 | 0.0001 | - |
|
918 |
+
| 3.9716 | 7550 | 0.0001 | - |
|
919 |
+
| 3.9769 | 7560 | 0.0002 | - |
|
920 |
+
| 3.9821 | 7570 | 0.0001 | - |
|
921 |
+
| 3.9874 | 7580 | 0.0001 | - |
|
922 |
+
| 3.9926 | 7590 | 0.0001 | - |
|
923 |
+
| 3.9979 | 7600 | 0.0001 | - |
|
924 |
+
| **4.0** | **7604** | **-** | **0.0319** |
|
925 |
+
|
926 |
+
* The bold row denotes the saved checkpoint.
|
927 |
+
### Framework Versions
|
928 |
+
- Python: 3.10.12
|
929 |
+
- SetFit: 1.0.3
|
930 |
+
- Sentence Transformers: 3.0.1
|
931 |
+
- Transformers: 4.37.0
|
932 |
+
- PyTorch: 2.5.1+cu121
|
933 |
+
- Datasets: 3.1.0
|
934 |
+
- Tokenizers: 0.15.2
|
935 |
+
|
936 |
+
## Citation
|
937 |
+
|
938 |
+
### BibTeX
|
939 |
+
```bibtex
|
940 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
941 |
+
doi = {10.48550/ARXIV.2209.11055},
|
942 |
+
url = {https://arxiv.org/abs/2209.11055},
|
943 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
944 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
945 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
946 |
+
publisher = {arXiv},
|
947 |
+
year = {2022},
|
948 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
949 |
+
}
|
950 |
+
```
|
951 |
+
|
952 |
+
<!--
|
953 |
+
## Glossary
|
954 |
+
|
955 |
+
*Clearly define terms in order to be accessible across audiences.*
|
956 |
+
-->
|
957 |
+
|
958 |
+
<!--
|
959 |
+
## Model Card Authors
|
960 |
+
|
961 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
962 |
+
-->
|
963 |
+
|
964 |
+
<!--
|
965 |
+
## Model Card Contact
|
966 |
+
|
967 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
968 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "checkpoints/step_7604",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.37.0",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.37.0",
|
5 |
+
"pytorch": "2.5.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": [
|
4 |
+
"greet-hi",
|
5 |
+
"greet-who_are_you",
|
6 |
+
"greet-good_bye",
|
7 |
+
"general-questions",
|
8 |
+
"recommendations",
|
9 |
+
"website-information"
|
10 |
+
]
|
11 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc51e29743dc488719e0c77b2e5216f524d024652c0b8216f74ea506cdfab688
|
3 |
+
size 90864192
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:423f90512098bbf6b2565ce00e27406bff850e5f54f904aa20462b55b51244c2
|
3 |
+
size 19367
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 128,
|
50 |
+
"model_max_length": 256,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|