Nous-Hermes-llama-2-7b_7b_cluster017_partitioned_v3_standardized_017
/
checkpoint-600
/trainer_state.json
{ | |
"best_metric": 0.4673095643520355, | |
"best_model_checkpoint": "./output_v2/7b_cluster017_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_017/checkpoint-600", | |
"epoch": 0.7168458781362007, | |
"global_step": 600, | |
"is_hyper_param_search": false, | |
"is_local_process_zero": true, | |
"is_world_process_zero": true, | |
"log_history": [ | |
{ | |
"epoch": 0.01, | |
"learning_rate": 0.0002, | |
"loss": 0.5801, | |
"step": 10 | |
}, | |
{ | |
"epoch": 0.02, | |
"learning_rate": 0.0002, | |
"loss": 0.6179, | |
"step": 20 | |
}, | |
{ | |
"epoch": 0.04, | |
"learning_rate": 0.0002, | |
"loss": 0.5163, | |
"step": 30 | |
}, | |
{ | |
"epoch": 0.05, | |
"learning_rate": 0.0002, | |
"loss": 0.5249, | |
"step": 40 | |
}, | |
{ | |
"epoch": 0.06, | |
"learning_rate": 0.0002, | |
"loss": 0.5421, | |
"step": 50 | |
}, | |
{ | |
"epoch": 0.07, | |
"learning_rate": 0.0002, | |
"loss": 0.4993, | |
"step": 60 | |
}, | |
{ | |
"epoch": 0.08, | |
"learning_rate": 0.0002, | |
"loss": 0.5421, | |
"step": 70 | |
}, | |
{ | |
"epoch": 0.1, | |
"learning_rate": 0.0002, | |
"loss": 0.4769, | |
"step": 80 | |
}, | |
{ | |
"epoch": 0.11, | |
"learning_rate": 0.0002, | |
"loss": 0.5084, | |
"step": 90 | |
}, | |
{ | |
"epoch": 0.12, | |
"learning_rate": 0.0002, | |
"loss": 0.4731, | |
"step": 100 | |
}, | |
{ | |
"epoch": 0.13, | |
"learning_rate": 0.0002, | |
"loss": 0.5069, | |
"step": 110 | |
}, | |
{ | |
"epoch": 0.14, | |
"learning_rate": 0.0002, | |
"loss": 0.4659, | |
"step": 120 | |
}, | |
{ | |
"epoch": 0.16, | |
"learning_rate": 0.0002, | |
"loss": 0.4863, | |
"step": 130 | |
}, | |
{ | |
"epoch": 0.17, | |
"learning_rate": 0.0002, | |
"loss": 0.5124, | |
"step": 140 | |
}, | |
{ | |
"epoch": 0.18, | |
"learning_rate": 0.0002, | |
"loss": 0.5311, | |
"step": 150 | |
}, | |
{ | |
"epoch": 0.19, | |
"learning_rate": 0.0002, | |
"loss": 0.5032, | |
"step": 160 | |
}, | |
{ | |
"epoch": 0.2, | |
"learning_rate": 0.0002, | |
"loss": 0.5065, | |
"step": 170 | |
}, | |
{ | |
"epoch": 0.22, | |
"learning_rate": 0.0002, | |
"loss": 0.4613, | |
"step": 180 | |
}, | |
{ | |
"epoch": 0.23, | |
"learning_rate": 0.0002, | |
"loss": 0.517, | |
"step": 190 | |
}, | |
{ | |
"epoch": 0.24, | |
"learning_rate": 0.0002, | |
"loss": 0.4761, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.24, | |
"eval_loss": 0.4977516829967499, | |
"eval_runtime": 178.665, | |
"eval_samples_per_second": 5.597, | |
"eval_steps_per_second": 2.799, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.24, | |
"mmlu_eval_accuracy": 0.4731690276039549, | |
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, | |
"mmlu_eval_accuracy_anatomy": 0.6428571428571429, | |
"mmlu_eval_accuracy_astronomy": 0.4375, | |
"mmlu_eval_accuracy_business_ethics": 0.45454545454545453, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, | |
"mmlu_eval_accuracy_college_biology": 0.4375, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, | |
"mmlu_eval_accuracy_college_medicine": 0.4090909090909091, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.45454545454545453, | |
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.5625, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, | |
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, | |
"mmlu_eval_accuracy_global_facts": 0.6, | |
"mmlu_eval_accuracy_high_school_biology": 0.34375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5, | |
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, | |
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333, | |
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5, | |
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, | |
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, | |
"mmlu_eval_accuracy_international_law": 0.6923076923076923, | |
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, | |
"mmlu_eval_accuracy_management": 0.6363636363636364, | |
"mmlu_eval_accuracy_marketing": 0.68, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, | |
"mmlu_eval_accuracy_moral_disputes": 0.42105263157894735, | |
"mmlu_eval_accuracy_moral_scenarios": 0.23, | |
"mmlu_eval_accuracy_nutrition": 0.6363636363636364, | |
"mmlu_eval_accuracy_philosophy": 0.47058823529411764, | |
"mmlu_eval_accuracy_prehistory": 0.5142857142857142, | |
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, | |
"mmlu_eval_accuracy_professional_law": 0.32941176470588235, | |
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, | |
"mmlu_eval_accuracy_professional_psychology": 0.34782608695652173, | |
"mmlu_eval_accuracy_public_relations": 0.5833333333333334, | |
"mmlu_eval_accuracy_security_studies": 0.48148148148148145, | |
"mmlu_eval_accuracy_sociology": 0.6363636363636364, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, | |
"mmlu_eval_accuracy_virology": 0.4444444444444444, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 1.201889930774431, | |
"step": 200 | |
}, | |
{ | |
"epoch": 0.25, | |
"learning_rate": 0.0002, | |
"loss": 0.447, | |
"step": 210 | |
}, | |
{ | |
"epoch": 0.26, | |
"learning_rate": 0.0002, | |
"loss": 0.5419, | |
"step": 220 | |
}, | |
{ | |
"epoch": 0.27, | |
"learning_rate": 0.0002, | |
"loss": 0.46, | |
"step": 230 | |
}, | |
{ | |
"epoch": 0.29, | |
"learning_rate": 0.0002, | |
"loss": 0.481, | |
"step": 240 | |
}, | |
{ | |
"epoch": 0.3, | |
"learning_rate": 0.0002, | |
"loss": 0.4279, | |
"step": 250 | |
}, | |
{ | |
"epoch": 0.31, | |
"learning_rate": 0.0002, | |
"loss": 0.462, | |
"step": 260 | |
}, | |
{ | |
"epoch": 0.32, | |
"learning_rate": 0.0002, | |
"loss": 0.4866, | |
"step": 270 | |
}, | |
{ | |
"epoch": 0.33, | |
"learning_rate": 0.0002, | |
"loss": 0.4565, | |
"step": 280 | |
}, | |
{ | |
"epoch": 0.35, | |
"learning_rate": 0.0002, | |
"loss": 0.4579, | |
"step": 290 | |
}, | |
{ | |
"epoch": 0.36, | |
"learning_rate": 0.0002, | |
"loss": 0.4585, | |
"step": 300 | |
}, | |
{ | |
"epoch": 0.37, | |
"learning_rate": 0.0002, | |
"loss": 0.466, | |
"step": 310 | |
}, | |
{ | |
"epoch": 0.38, | |
"learning_rate": 0.0002, | |
"loss": 0.4766, | |
"step": 320 | |
}, | |
{ | |
"epoch": 0.39, | |
"learning_rate": 0.0002, | |
"loss": 0.4682, | |
"step": 330 | |
}, | |
{ | |
"epoch": 0.41, | |
"learning_rate": 0.0002, | |
"loss": 0.4467, | |
"step": 340 | |
}, | |
{ | |
"epoch": 0.42, | |
"learning_rate": 0.0002, | |
"loss": 0.4675, | |
"step": 350 | |
}, | |
{ | |
"epoch": 0.43, | |
"learning_rate": 0.0002, | |
"loss": 0.4816, | |
"step": 360 | |
}, | |
{ | |
"epoch": 0.44, | |
"learning_rate": 0.0002, | |
"loss": 0.4439, | |
"step": 370 | |
}, | |
{ | |
"epoch": 0.45, | |
"learning_rate": 0.0002, | |
"loss": 0.4553, | |
"step": 380 | |
}, | |
{ | |
"epoch": 0.47, | |
"learning_rate": 0.0002, | |
"loss": 0.4707, | |
"step": 390 | |
}, | |
{ | |
"epoch": 0.48, | |
"learning_rate": 0.0002, | |
"loss": 0.4389, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.48, | |
"eval_loss": 0.4804040491580963, | |
"eval_runtime": 178.9419, | |
"eval_samples_per_second": 5.588, | |
"eval_steps_per_second": 2.794, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.48, | |
"mmlu_eval_accuracy": 0.4686810757119835, | |
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, | |
"mmlu_eval_accuracy_anatomy": 0.5, | |
"mmlu_eval_accuracy_astronomy": 0.4375, | |
"mmlu_eval_accuracy_business_ethics": 0.45454545454545453, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, | |
"mmlu_eval_accuracy_college_biology": 0.4375, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, | |
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.36363636363636365, | |
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, | |
"mmlu_eval_accuracy_econometrics": 0.16666666666666666, | |
"mmlu_eval_accuracy_electrical_engineering": 0.375, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, | |
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857, | |
"mmlu_eval_accuracy_global_facts": 0.5, | |
"mmlu_eval_accuracy_high_school_biology": 0.34375, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, | |
"mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, | |
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, | |
"mmlu_eval_accuracy_high_school_psychology": 0.7666666666666667, | |
"mmlu_eval_accuracy_high_school_statistics": 0.43478260869565216, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5, | |
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, | |
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, | |
"mmlu_eval_accuracy_international_law": 0.6923076923076923, | |
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, | |
"mmlu_eval_accuracy_management": 0.5454545454545454, | |
"mmlu_eval_accuracy_marketing": 0.76, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, | |
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, | |
"mmlu_eval_accuracy_moral_scenarios": 0.23, | |
"mmlu_eval_accuracy_nutrition": 0.6060606060606061, | |
"mmlu_eval_accuracy_philosophy": 0.47058823529411764, | |
"mmlu_eval_accuracy_prehistory": 0.5142857142857142, | |
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, | |
"mmlu_eval_accuracy_professional_law": 0.34705882352941175, | |
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, | |
"mmlu_eval_accuracy_professional_psychology": 0.37681159420289856, | |
"mmlu_eval_accuracy_public_relations": 0.5833333333333334, | |
"mmlu_eval_accuracy_security_studies": 0.5185185185185185, | |
"mmlu_eval_accuracy_sociology": 0.6363636363636364, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, | |
"mmlu_eval_accuracy_virology": 0.4444444444444444, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 1.168120609523422, | |
"step": 400 | |
}, | |
{ | |
"epoch": 0.49, | |
"learning_rate": 0.0002, | |
"loss": 0.49, | |
"step": 410 | |
}, | |
{ | |
"epoch": 0.5, | |
"learning_rate": 0.0002, | |
"loss": 0.4614, | |
"step": 420 | |
}, | |
{ | |
"epoch": 0.51, | |
"learning_rate": 0.0002, | |
"loss": 0.4711, | |
"step": 430 | |
}, | |
{ | |
"epoch": 0.53, | |
"learning_rate": 0.0002, | |
"loss": 0.4557, | |
"step": 440 | |
}, | |
{ | |
"epoch": 0.54, | |
"learning_rate": 0.0002, | |
"loss": 0.4454, | |
"step": 450 | |
}, | |
{ | |
"epoch": 0.55, | |
"learning_rate": 0.0002, | |
"loss": 0.4819, | |
"step": 460 | |
}, | |
{ | |
"epoch": 0.56, | |
"learning_rate": 0.0002, | |
"loss": 0.4694, | |
"step": 470 | |
}, | |
{ | |
"epoch": 0.57, | |
"learning_rate": 0.0002, | |
"loss": 0.4602, | |
"step": 480 | |
}, | |
{ | |
"epoch": 0.59, | |
"learning_rate": 0.0002, | |
"loss": 0.4528, | |
"step": 490 | |
}, | |
{ | |
"epoch": 0.6, | |
"learning_rate": 0.0002, | |
"loss": 0.4415, | |
"step": 500 | |
}, | |
{ | |
"epoch": 0.61, | |
"learning_rate": 0.0002, | |
"loss": 0.4597, | |
"step": 510 | |
}, | |
{ | |
"epoch": 0.62, | |
"learning_rate": 0.0002, | |
"loss": 0.437, | |
"step": 520 | |
}, | |
{ | |
"epoch": 0.63, | |
"learning_rate": 0.0002, | |
"loss": 0.4649, | |
"step": 530 | |
}, | |
{ | |
"epoch": 0.65, | |
"learning_rate": 0.0002, | |
"loss": 0.4552, | |
"step": 540 | |
}, | |
{ | |
"epoch": 0.66, | |
"learning_rate": 0.0002, | |
"loss": 0.4517, | |
"step": 550 | |
}, | |
{ | |
"epoch": 0.67, | |
"learning_rate": 0.0002, | |
"loss": 0.4324, | |
"step": 560 | |
}, | |
{ | |
"epoch": 0.68, | |
"learning_rate": 0.0002, | |
"loss": 0.4473, | |
"step": 570 | |
}, | |
{ | |
"epoch": 0.69, | |
"learning_rate": 0.0002, | |
"loss": 0.4611, | |
"step": 580 | |
}, | |
{ | |
"epoch": 0.7, | |
"learning_rate": 0.0002, | |
"loss": 0.4378, | |
"step": 590 | |
}, | |
{ | |
"epoch": 0.72, | |
"learning_rate": 0.0002, | |
"loss": 0.4337, | |
"step": 600 | |
}, | |
{ | |
"epoch": 0.72, | |
"eval_loss": 0.4673095643520355, | |
"eval_runtime": 178.8409, | |
"eval_samples_per_second": 5.592, | |
"eval_steps_per_second": 2.796, | |
"step": 600 | |
}, | |
{ | |
"epoch": 0.72, | |
"mmlu_eval_accuracy": 0.4657957744296099, | |
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, | |
"mmlu_eval_accuracy_anatomy": 0.5714285714285714, | |
"mmlu_eval_accuracy_astronomy": 0.4375, | |
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454, | |
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, | |
"mmlu_eval_accuracy_college_biology": 0.4375, | |
"mmlu_eval_accuracy_college_chemistry": 0.125, | |
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, | |
"mmlu_eval_accuracy_college_medicine": 0.45454545454545453, | |
"mmlu_eval_accuracy_college_physics": 0.45454545454545453, | |
"mmlu_eval_accuracy_computer_security": 0.45454545454545453, | |
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, | |
"mmlu_eval_accuracy_econometrics": 0.25, | |
"mmlu_eval_accuracy_electrical_engineering": 0.3125, | |
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, | |
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427, | |
"mmlu_eval_accuracy_global_facts": 0.5, | |
"mmlu_eval_accuracy_high_school_biology": 0.40625, | |
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, | |
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, | |
"mmlu_eval_accuracy_high_school_european_history": 0.5, | |
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, | |
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, | |
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, | |
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, | |
"mmlu_eval_accuracy_high_school_microeconomics": 0.5, | |
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, | |
"mmlu_eval_accuracy_high_school_psychology": 0.75, | |
"mmlu_eval_accuracy_high_school_statistics": 0.4782608695652174, | |
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, | |
"mmlu_eval_accuracy_high_school_world_history": 0.5, | |
"mmlu_eval_accuracy_human_aging": 0.6956521739130435, | |
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, | |
"mmlu_eval_accuracy_international_law": 0.6923076923076923, | |
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, | |
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, | |
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727, | |
"mmlu_eval_accuracy_management": 0.5454545454545454, | |
"mmlu_eval_accuracy_marketing": 0.68, | |
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, | |
"mmlu_eval_accuracy_miscellaneous": 0.627906976744186, | |
"mmlu_eval_accuracy_moral_disputes": 0.5, | |
"mmlu_eval_accuracy_moral_scenarios": 0.23, | |
"mmlu_eval_accuracy_nutrition": 0.6363636363636364, | |
"mmlu_eval_accuracy_philosophy": 0.4411764705882353, | |
"mmlu_eval_accuracy_prehistory": 0.5428571428571428, | |
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, | |
"mmlu_eval_accuracy_professional_law": 0.3176470588235294, | |
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, | |
"mmlu_eval_accuracy_professional_psychology": 0.34782608695652173, | |
"mmlu_eval_accuracy_public_relations": 0.5, | |
"mmlu_eval_accuracy_security_studies": 0.48148148148148145, | |
"mmlu_eval_accuracy_sociology": 0.5909090909090909, | |
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, | |
"mmlu_eval_accuracy_virology": 0.3888888888888889, | |
"mmlu_eval_accuracy_world_religions": 0.7368421052631579, | |
"mmlu_loss": 1.1695979737893096, | |
"step": 600 | |
} | |
], | |
"max_steps": 5000, | |
"num_train_epochs": 6, | |
"total_flos": 1.2298556702785536e+17, | |
"trial_name": null, | |
"trial_params": null | |
} | |