{ "best_metric": 0.8391241431236267, "best_model_checkpoint": "./output_v2/7b_cluster031_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_031/checkpoint-800", "epoch": 0.5503955968352253, "global_step": 800, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.9502, "step": 10 }, { "epoch": 0.01, "learning_rate": 0.0002, "loss": 0.9426, "step": 20 }, { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.9682, "step": 30 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.8517, "step": 40 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.8944, "step": 50 }, { "epoch": 0.04, "learning_rate": 0.0002, "loss": 0.8608, "step": 60 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.915, "step": 70 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.8349, "step": 80 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.8912, "step": 90 }, { "epoch": 0.07, "learning_rate": 0.0002, "loss": 0.876, "step": 100 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.8697, "step": 110 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.8604, "step": 120 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.8654, "step": 130 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.8804, "step": 140 }, { "epoch": 0.1, "learning_rate": 0.0002, "loss": 0.8355, "step": 150 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.8704, "step": 160 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.8241, "step": 170 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.8523, "step": 180 }, { "epoch": 0.13, "learning_rate": 0.0002, "loss": 0.845, "step": 190 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.8681, "step": 200 }, { "epoch": 0.14, "eval_loss": 0.8539559245109558, "eval_runtime": 189.7934, "eval_samples_per_second": 5.269, "eval_steps_per_second": 2.634, "step": 200 }, { "epoch": 0.14, "mmlu_eval_accuracy": 0.47295530665862845, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.36363636363636365, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.5, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.35714285714285715, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.7777777777777778, "mmlu_eval_accuracy_high_school_european_history": 0.7222222222222222, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.4473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.4117647058823529, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.32941176470588235, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.2187759077891358, "step": 200 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.8902, "step": 210 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.9119, "step": 220 }, { "epoch": 0.16, "learning_rate": 0.0002, "loss": 0.8849, "step": 230 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.8345, "step": 240 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.8418, "step": 250 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.8305, "step": 260 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.8525, "step": 270 }, { "epoch": 0.19, "learning_rate": 0.0002, "loss": 0.8523, "step": 280 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.8511, "step": 290 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.8297, "step": 300 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.8213, "step": 310 }, { "epoch": 0.22, "learning_rate": 0.0002, "loss": 0.8225, "step": 320 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.8359, "step": 330 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.8326, "step": 340 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.832, "step": 350 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.8208, "step": 360 }, { "epoch": 0.25, "learning_rate": 0.0002, "loss": 0.8427, "step": 370 }, { "epoch": 0.26, "learning_rate": 0.0002, "loss": 0.8812, "step": 380 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.9016, "step": 390 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.8694, "step": 400 }, { "epoch": 0.28, "eval_loss": 0.8468822240829468, "eval_runtime": 189.8705, "eval_samples_per_second": 5.267, "eval_steps_per_second": 2.633, "step": 400 }, { "epoch": 0.28, "mmlu_eval_accuracy": 0.45864815481629223, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.35714285714285715, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.6818181818181818, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.68, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.42857142857142855, "mmlu_eval_accuracy_professional_accounting": 0.3870967741935484, "mmlu_eval_accuracy_professional_law": 0.3588235294117647, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.5454545454545454, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.9554785659084433, "step": 400 }, { "epoch": 0.28, "learning_rate": 0.0002, "loss": 0.8383, "step": 410 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 0.8315, "step": 420 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.8613, "step": 430 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.865, "step": 440 }, { "epoch": 0.31, "learning_rate": 0.0002, "loss": 0.8028, "step": 450 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.8557, "step": 460 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.8834, "step": 470 }, { "epoch": 0.33, "learning_rate": 0.0002, "loss": 0.8468, "step": 480 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.8556, "step": 490 }, { "epoch": 0.34, "learning_rate": 0.0002, "loss": 0.8591, "step": 500 }, { "epoch": 0.35, "learning_rate": 0.0002, "loss": 0.8683, "step": 510 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.8278, "step": 520 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.8208, "step": 530 }, { "epoch": 0.37, "learning_rate": 0.0002, "loss": 0.8372, "step": 540 }, { "epoch": 0.38, "learning_rate": 0.0002, "loss": 0.8144, "step": 550 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 0.8783, "step": 560 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 0.8337, "step": 570 }, { "epoch": 0.4, "learning_rate": 0.0002, "loss": 0.8572, "step": 580 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 0.8275, "step": 590 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 0.8599, "step": 600 }, { "epoch": 0.41, "eval_loss": 0.84308922290802, "eval_runtime": 189.8586, "eval_samples_per_second": 5.267, "eval_steps_per_second": 2.634, "step": 600 }, { "epoch": 0.41, "mmlu_eval_accuracy": 0.45447446268908714, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.36363636363636365, "mmlu_eval_accuracy_conceptual_physics": 0.34615384615384615, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.4, "mmlu_eval_accuracy_high_school_biology": 0.3125, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.23076923076923078, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.6923076923076923, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.45454545454545453, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6511627906976745, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.22, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.5294117647058824, "mmlu_eval_accuracy_prehistory": 0.4, "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, "mmlu_eval_accuracy_professional_law": 0.3235294117647059, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.43478260869565216, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.5454545454545454, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.5, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.9984549878082449, "step": 600 }, { "epoch": 0.42, "learning_rate": 0.0002, "loss": 0.8279, "step": 610 }, { "epoch": 0.43, "learning_rate": 0.0002, "loss": 0.8363, "step": 620 }, { "epoch": 0.43, "learning_rate": 0.0002, "loss": 0.8698, "step": 630 }, { "epoch": 0.44, "learning_rate": 0.0002, "loss": 0.8407, "step": 640 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 0.8555, "step": 650 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 0.8393, "step": 660 }, { "epoch": 0.46, "learning_rate": 0.0002, "loss": 0.8527, "step": 670 }, { "epoch": 0.47, "learning_rate": 0.0002, "loss": 0.8666, "step": 680 }, { "epoch": 0.47, "learning_rate": 0.0002, "loss": 0.8584, "step": 690 }, { "epoch": 0.48, "learning_rate": 0.0002, "loss": 0.8583, "step": 700 }, { "epoch": 0.49, "learning_rate": 0.0002, "loss": 0.8524, "step": 710 }, { "epoch": 0.5, "learning_rate": 0.0002, "loss": 0.8543, "step": 720 }, { "epoch": 0.5, "learning_rate": 0.0002, "loss": 0.8687, "step": 730 }, { "epoch": 0.51, "learning_rate": 0.0002, "loss": 0.8593, "step": 740 }, { "epoch": 0.52, "learning_rate": 0.0002, "loss": 0.8365, "step": 750 }, { "epoch": 0.52, "learning_rate": 0.0002, "loss": 0.8718, "step": 760 }, { "epoch": 0.53, "learning_rate": 0.0002, "loss": 0.8362, "step": 770 }, { "epoch": 0.54, "learning_rate": 0.0002, "loss": 0.8114, "step": 780 }, { "epoch": 0.54, "learning_rate": 0.0002, "loss": 0.8611, "step": 790 }, { "epoch": 0.55, "learning_rate": 0.0002, "loss": 0.8521, "step": 800 }, { "epoch": 0.55, "eval_loss": 0.8391241431236267, "eval_runtime": 189.8022, "eval_samples_per_second": 5.269, "eval_steps_per_second": 2.634, "step": 800 }, { "epoch": 0.55, "mmlu_eval_accuracy": 0.4694480562846655, "mmlu_eval_accuracy_abstract_algebra": 0.45454545454545453, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.3125, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.25, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.36363636363636365, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.45454545454545453, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.25, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637, "mmlu_eval_accuracy_formal_logic": 0.21428571428571427, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.4375, "mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727, "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, "mmlu_eval_accuracy_high_school_european_history": 0.4444444444444444, "mmlu_eval_accuracy_high_school_geography": 0.8636363636363636, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667, "mmlu_eval_accuracy_high_school_statistics": 0.2608695652173913, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.7272727272727273, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.6666666666666666, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.5428571428571428, "mmlu_eval_accuracy_professional_accounting": 0.22580645161290322, "mmlu_eval_accuracy_professional_law": 0.31176470588235294, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.4057971014492754, "mmlu_eval_accuracy_public_relations": 0.5, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.7272727272727273, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.3888888888888889, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.0093606002337006, "step": 800 } ], "max_steps": 5000, "num_train_epochs": 4, "total_flos": 1.4473563545228083e+17, "trial_name": null, "trial_params": null }