prateeky2806's picture
Training in progress, step 200
cd0c821
raw
history blame
6.54 kB
{
"best_metric": 0.32424649596214294,
"best_model_checkpoint": "./output_v2/7b_cluster03_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_03/checkpoint-200",
"epoch": 0.6866952789699571,
"global_step": 200,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.8627,
"step": 10
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.4107,
"step": 20
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.3691,
"step": 30
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.3979,
"step": 40
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.3495,
"step": 50
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.3693,
"step": 60
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.357,
"step": 70
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.3456,
"step": 80
},
{
"epoch": 0.31,
"learning_rate": 0.0002,
"loss": 0.3122,
"step": 90
},
{
"epoch": 0.34,
"learning_rate": 0.0002,
"loss": 0.3131,
"step": 100
},
{
"epoch": 0.38,
"learning_rate": 0.0002,
"loss": 0.3678,
"step": 110
},
{
"epoch": 0.41,
"learning_rate": 0.0002,
"loss": 0.3364,
"step": 120
},
{
"epoch": 0.45,
"learning_rate": 0.0002,
"loss": 0.324,
"step": 130
},
{
"epoch": 0.48,
"learning_rate": 0.0002,
"loss": 0.353,
"step": 140
},
{
"epoch": 0.52,
"learning_rate": 0.0002,
"loss": 0.3473,
"step": 150
},
{
"epoch": 0.55,
"learning_rate": 0.0002,
"loss": 0.363,
"step": 160
},
{
"epoch": 0.58,
"learning_rate": 0.0002,
"loss": 0.3192,
"step": 170
},
{
"epoch": 0.62,
"learning_rate": 0.0002,
"loss": 0.3125,
"step": 180
},
{
"epoch": 0.65,
"learning_rate": 0.0002,
"loss": 0.3001,
"step": 190
},
{
"epoch": 0.69,
"learning_rate": 0.0002,
"loss": 0.3164,
"step": 200
},
{
"epoch": 0.69,
"eval_loss": 0.32424649596214294,
"eval_runtime": 166.2846,
"eval_samples_per_second": 6.014,
"eval_steps_per_second": 3.007,
"step": 200
},
{
"epoch": 0.69,
"mmlu_eval_accuracy": 0.46206132856742516,
"mmlu_eval_accuracy_abstract_algebra": 0.09090909090909091,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.45454545454545453,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.45454545454545453,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.25,
"mmlu_eval_accuracy_electrical_engineering": 0.5625,
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.34375,
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7666666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.36363636363636365,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.8181818181818182,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6363636363636364,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.1935483870967742,
"mmlu_eval_accuracy_professional_law": 0.3,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.4166666666666667,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.7272727272727273,
"mmlu_eval_accuracy_us_foreign_policy": 0.8181818181818182,
"mmlu_eval_accuracy_virology": 0.3888888888888889,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.954094658943754,
"step": 200
}
],
"max_steps": 5000,
"num_train_epochs": 18,
"total_flos": 9578945836154880.0,
"trial_name": null,
"trial_params": null
}