File size: 5,741 Bytes
a175ed9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------

import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import DropPath

class BiMultiHeadAttention(nn.Module):
    def __init__(self, v_dim, l_dim, embed_dim, num_heads, dropout=0.1, cfg=None):
        super(BiMultiHeadAttention, self).__init__()

        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.head_dim = embed_dim // num_heads
        self.v_dim = v_dim
        self.l_dim = l_dim

        assert (
            self.head_dim * self.num_heads == self.embed_dim
        ), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
        self.scale = self.head_dim ** (-0.5)
        self.dropout = dropout

        self.v_proj = nn.Linear(self.v_dim, self.embed_dim)
        self.l_proj = nn.Linear(self.l_dim, self.embed_dim)
        self.values_l_proj = nn.Linear(self.l_dim, self.embed_dim)

        self.out_v_proj = nn.Linear(self.embed_dim, self.v_dim)

        self.stable_softmax_2d = True
        self.clamp_min_for_underflow = True
        self.clamp_max_for_overflow = True

        self._reset_parameters()

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def _reset_parameters(self):
        nn.init.xavier_uniform_(self.v_proj.weight)
        self.v_proj.bias.data.fill_(0)
        nn.init.xavier_uniform_(self.l_proj.weight)
        self.l_proj.bias.data.fill_(0)
        nn.init.xavier_uniform_(self.values_l_proj.weight)
        self.values_l_proj.bias.data.fill_(0)
        nn.init.xavier_uniform_(self.out_v_proj.weight)
        self.out_v_proj.bias.data.fill_(0)

    def forward(self, v, l, attention_mask_v=None, attention_mask_l=None):
        bsz, tgt_len, _ = v.size()

        query_states = self.v_proj(v) * self.scale
        key_states = self._shape(self.l_proj(l), -1, bsz)
        value_l_states = self._shape(self.values_l_proj(l), -1, bsz)

        proj_shape = (bsz * self.num_heads, -1, self.head_dim)
        query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
        key_states = key_states.view(*proj_shape)
        value_l_states = value_l_states.view(*proj_shape)

        src_len = key_states.size(1)
        attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))  # bs*nhead, nimg, ntxt

        if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
            )

        if self.stable_softmax_2d:
            attn_weights = attn_weights - attn_weights.max()

        if self.clamp_min_for_underflow:
            attn_weights = torch.clamp(
                attn_weights, min=-50000
            )  # Do not increase -50000, data type half has quite limited range
        if self.clamp_max_for_overflow:
            attn_weights = torch.clamp(
                attn_weights, max=50000
            )  # Do not increase 50000, data type half has quite limited range

        attn_weights_v = attn_weights.softmax(dim=-1)
        attn_probs_v = F.dropout(attn_weights_v, p=self.dropout, training=self.training)
        attn_output_v = torch.bmm(attn_probs_v, value_l_states)
        if attn_output_v.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output_v` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output_v.size()}"
            )

        attn_output_v = attn_output_v.view(bsz, self.num_heads, tgt_len, self.head_dim)
        attn_output_v = attn_output_v.transpose(1, 2)
        attn_output_v = attn_output_v.reshape(bsz, tgt_len, self.embed_dim)
        attn_output_v = self.out_v_proj(attn_output_v)

        return attn_output_v


# Bi-Direction MHA (text->image, image->text)
class BiAttentionBlock(nn.Module):
    def __init__(
        self,
        v_dim,
        l_dim,
        embed_dim,
        num_heads,
        dropout=0.1,
        drop_path=0.0,
        cfg=None,
    ):
        """
        Inputs:
            embed_dim - Dimensionality of input and attention feature vectors
            hidden_dim - Dimensionality of hidden layer in feed-forward network
                         (usually 2-4x larger than embed_dim)
            num_heads - Number of heads to use in the Multi-Head Attention block
            dropout - Amount of dropout to apply in the feed-forward network
        """
        super(BiAttentionBlock, self).__init__()

        # pre layer norm
        self.layer_norm_v = nn.LayerNorm(v_dim)
        self.layer_norm_l = nn.LayerNorm(l_dim)
        self.attn = BiMultiHeadAttention(
            v_dim=v_dim, l_dim=l_dim, embed_dim=embed_dim, num_heads=num_heads, dropout=dropout
        )

        # add layer scale for training stability
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

    def forward(self, v, l, attention_mask_v=None, attention_mask_l=None):
        v = self.layer_norm_v(v)
        l = self.layer_norm_l(l)
        delta_v = self.attn(
            v, l, attention_mask_v=attention_mask_v, attention_mask_l=attention_mask_l
        )
        delta_v = self.drop_path(delta_v)

        return delta_v