File size: 11,123 Bytes
780c589 df8cf63 780c589 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
###########################################################################
# Computer vision - Embedded person tracking demo software by HyperbeeAI. #
# Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. [email protected] #
###########################################################################
# Author: Zylo117
"""
COCO-Style Evaluations
put images here datasets/your_project_name/val_set_name/*.jpg
put annotations here datasets/your_project_name/annotations/instances_{val_set_name}.json
put weights here /path/to/your/weights/*.pth
change compound_coef
"""
import json
import os
import numpy as np
import argparse
import torch
from tqdm import tqdm
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from torch.utils.data import DataLoader
import torchvision
import torchvision.transforms as transforms
import time
from models import mnv2_SSDlite
from library.ssd import conv_model_fptunc2fpt, conv_model_fpt2qat, conv_model_qat2hw, collate_fn, PredsPostProcess, round_floats
from dataloader import CocoDetection, input_fxpt_normalize
#from library.ssd import generateAnchorsInOrigImage, collate_fn, point_form, prepareHeadDataforLoss_fast, plot_image_mnv2_2xSSDlite, sampleRandomPicsFromCOCO, saveOutputs ,PredsPostProcess, calculatemAP, batchNormAdaptation, round_floats
ap = argparse.ArgumentParser()
ap.add_argument('-m', '--mode', type=str, default='qat', help='Mode of the model, allowed modes: fpt_unc, fpt, qat')
ap.add_argument('--nms_threshold', type=float, default=0.5, help='non max supression threshold')
ap.add_argument('--conf_threshold', type=float, default=0.5, help='confidence treshold, predictions below this level will be discarded')
ap.add_argument('-dp', '--data_path', type=str, default=None, help='/path/to/images')
ap.add_argument('-ap', '--json_path', type=str, default=None, help='/path/to/annotations.json')
ap.add_argument('-wp', '--weights_path', type=str, default=None, help='/path/to/weights')
args = ap.parse_args()
mode = args.mode
nms_threshold = args.nms_threshold
conf_threshold = args.conf_threshold
data_path = args.data_path
json_path = args.json_path
weights_path = args.weights_path
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def evaluate_coco(model, DATA_PATH, JSON_PATH , nmsIoUTreshold = 0.5, PredMinConfTreshold = 0.5, HW_mode = False):
if HW_mode:
act_8b_mode = True
else:
act_8b_mode = False
transform = transforms.Compose([transforms.ToTensor(), input_fxpt_normalize(act_8b_mode=act_8b_mode)])
targetFileName = 'resized.json'
dataset = CocoDetection(root=DATA_PATH, annFile=JSON_PATH, transform=transform, scaleImgforCrop= None)
dataset.createResizedAnnotJson(targetFileName=targetFileName)
resizedFilePath = os.path.join(os.path.split(JSON_PATH)[0],targetFileName)
cocoGt=COCO(resizedFilePath)
os.remove(resizedFilePath)
seq_sampler = torch.utils.data.SequentialSampler(dataset)
data_loader = DataLoader(dataset,
sampler=seq_sampler,
batch_size=1,
collate_fn=collate_fn,
drop_last=False)
print(f"Dataset Length: {len(dataset)}, Number of Batches: {len(data_loader)}")
ANCHORS_HEAD1 = [(11.76, 28.97),
(20.98, 52.03),
(29.91, 77.24),
(38.97, 106.59)]
ANCHORS_HEAD2 = [(52.25, 144.77),
(65.86, 193.05),
(96.37, 254.09),
(100.91, 109.82),
(140, 350)]
predsPostProcess = PredsPostProcess(512, ANCHORS_HEAD1, ANCHORS_HEAD2)
dataDictList =[]
imgIDS = []
for i, data in enumerate(tqdm(data_loader)):
imageBatch, targetBatch , idxBatch = data
imageStack = torch.stack(imageBatch).detach().to(device)
imageStack.requires_grad_(True)
predBatch = model(imageStack)
if HW_mode:
BBs1 = predBatch[0].detach() / 128.0
CFs1 = predBatch[1].detach() / 128.0
BBs2 = predBatch[2].detach() / 128.0
CFs2 = predBatch[3].detach() / 128.0
else:
BBs1 = predBatch[0].detach()
CFs1 = predBatch[1].detach()
BBs2 = predBatch[2].detach()
CFs2 = predBatch[3].detach()
for imgNum in range(imageStack.shape[0]):
img = imageStack[imgNum,:,:,:]
target = targetBatch[imgNum]
image_id = int(idxBatch[imgNum])
imgIDS.append(image_id)
pred = (BBs1[imgNum,:,:,:].unsqueeze(0), CFs1[imgNum,:,:,:].unsqueeze(0),
BBs2[imgNum,:,:,:].unsqueeze(0), CFs2[imgNum,:,:,:].unsqueeze(0))
boxes, confidences = predsPostProcess.getPredsInOriginal(pred)
nms_picks = torchvision.ops.nms(boxes, confidences, nmsIoUTreshold)
boxes_to_draw = boxes[nms_picks]
confs_to_draw = confidences[nms_picks]
confMask = (confs_to_draw > PredMinConfTreshold)
# Inputs to mAP algorithm
if (confMask.any()):
# pred boxes -> [xmin,ymin,xmax,ymax], tensor shape[numpred,4]
bbox = boxes_to_draw[confMask]
scores = confs_to_draw[confMask]
# Convert BB to coco annot format -> [xmin,ymin,width, height]
bbox[:,2] = bbox[:,2] - bbox[:,0]
bbox[:,3] = bbox[:,3] - bbox[:,1]
bbox = bbox.tolist() # pred boxes -> [xmin,ymin,xmax,ymax], shape[numpred,4]
score = scores.tolist()
category_id = np.ones_like(score,dtype=int).tolist()
for j in range(len(bbox)):
box = {"image_id":image_id, "category_id":category_id[j], "bbox":bbox[j],"score":score[j]}
dataDictList.append(round_floats(box))
if (len(dataDictList)):
# Evavluate and Accumulate mAP for remained baches, if any
cocoDT = json.dumps(dataDictList)
# Write detections to .json file
with open('cocoDT.json', 'w') as outfile:
outfile.write(cocoDT)
# Load detections
cocoDt=cocoGt.loadRes('cocoDT.json')
os.remove("cocoDT.json")
# running evaluation
annType = 'bbox'
cocoEval = COCOeval(cocoGt,cocoDt,annType)
cocoEval.params.catIds = 1
cocoEval.params.imgIds = imgIDS
cocoEval.evaluate()
cocoEval.accumulate()
print('')
cocoEval.summarize()
else:
raise Exception('the model does not provide any valid output, check model architecture and the data input')
if __name__ == '__main__':
model = mnv2_SSDlite()
layer_bits_dictionary = {}
layer_bits_dictionary['conv1' ] = 8;
layer_bits_dictionary['epw_conv2' ] = 8;
layer_bits_dictionary['dw_conv2' ] = 8;
layer_bits_dictionary['ppw_conv2' ] = 8;
layer_bits_dictionary['epw_conv3' ] = 8;
layer_bits_dictionary['dw_conv3' ] = 8;
layer_bits_dictionary['ppw_conv3' ] = 8;
layer_bits_dictionary['epw_conv4' ] = 8;
layer_bits_dictionary['dw_conv4' ] = 8;
layer_bits_dictionary['ppw_conv4' ] = 8;
layer_bits_dictionary['epw_conv5'] = 8;
layer_bits_dictionary['dw_conv5'] = 8;
layer_bits_dictionary['ppw_conv5'] = 8;
layer_bits_dictionary['epw_conv6'] = 8;
layer_bits_dictionary['dw_conv6'] = 8;
layer_bits_dictionary['ppw_conv6'] = 8;
layer_bits_dictionary['epw_conv7'] = 8;
layer_bits_dictionary['dw_conv7'] = 8;
layer_bits_dictionary['ppw_conv7'] = 8;
layer_bits_dictionary['epw_conv8'] = 8;
layer_bits_dictionary['dw_conv8'] = 8;
layer_bits_dictionary['ppw_conv8'] = 8;
layer_bits_dictionary['epw_conv9'] = 8;
layer_bits_dictionary['dw_conv9'] = 8;
layer_bits_dictionary['ppw_conv9'] = 8;
layer_bits_dictionary['epw_conv10'] = 8;
layer_bits_dictionary['dw_conv10'] = 8;
layer_bits_dictionary['ppw_conv10'] = 8;
layer_bits_dictionary['epw_conv11'] = 8;
layer_bits_dictionary['dw_conv11'] = 8;
layer_bits_dictionary['ppw_conv11'] = 8;
layer_bits_dictionary['epw_conv12'] = 8;
layer_bits_dictionary['dw_conv12'] = 8;
layer_bits_dictionary['ppw_conv12'] = 8;
layer_bits_dictionary['epw_conv13'] = 8;
layer_bits_dictionary['dw_conv13'] = 8;
layer_bits_dictionary['ppw_conv13'] = 8;
layer_bits_dictionary['epw_conv14'] = 8;
layer_bits_dictionary['dw_conv14'] = 8;
layer_bits_dictionary['ppw_conv14'] = 8;
layer_bits_dictionary['epw_conv15'] = 8;
layer_bits_dictionary['dw_conv15'] = 8;
layer_bits_dictionary['ppw_conv15'] = 8;
layer_bits_dictionary['epw_conv16'] = 8;
layer_bits_dictionary['dw_conv16'] = 8;
layer_bits_dictionary['ppw_conv16'] = 8;
layer_bits_dictionary['epw_conv17'] = 8;
layer_bits_dictionary['dw_conv17'] = 8;
layer_bits_dictionary['ppw_conv17'] = 8;
layer_bits_dictionary['epw_conv18'] = 8;
layer_bits_dictionary['dw_conv18'] = 8;
layer_bits_dictionary['ppw_conv18'] = 8;
layer_bits_dictionary['head1_dw_classification'] = 8;
layer_bits_dictionary['head1_pw_classification'] = 8;
layer_bits_dictionary['head1_dw_regression'] = 8;
layer_bits_dictionary['head1_pw_regression'] = 8;
layer_bits_dictionary['head2_dw_classification'] = 8;
layer_bits_dictionary['head2_pw_classification'] = 8;
layer_bits_dictionary['head2_dw_regression'] = 8;
layer_bits_dictionary['head2_pw_regression'] = 8;
# Convert model to appropriate mode before loading weights
HW_mode = False
if mode == 'fpt_unc':
model.to(device)
elif mode == 'fpt':
model = conv_model_fptunc2fpt(model)
model.to(device)
elif mode == 'qat':
model = conv_model_fptunc2fpt(model)
model.to(device)
model = conv_model_fpt2qat(model, layer_bits_dictionary)
model.to(device)
elif mode == 'hw':
HW_mode = True
model = conv_model_fptunc2fpt(model)
model.to(device)
model = conv_model_fpt2qat(model, layer_bits_dictionary)
model.to(device)
model = conv_model_qat2hw(model)
model.to(device)
else:
raise Exception('Invalid model mode is selected, select from: fpt_unc, fpt, qat, hw')
weights = torch.load(weights_path, map_location=torch.device('cpu'))
model.load_state_dict(weights['state_dict'], strict=True)
model.requires_grad_(False)
model.eval()
if mode == 'qat' or mode == 'hw':
print(''*5)
print('*'*120)
print('qat or hardware mode is selected, please make sure you configured layer_bits_dictionary in "coco_eval.py" accordingly!!!')
print('*'*120)
print('')
time.sleep(5)
evaluate_coco(model, DATA_PATH=data_path, JSON_PATH=json_path , nmsIoUTreshold=nms_threshold,
PredMinConfTreshold=conf_threshold, HW_mode = HW_mode) |