File size: 1,804 Bytes
c918b95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---

library_name: transformers
license: mit
base_model: EleutherAI/gpt-neo-125M
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: MD5_gpt_neo
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# MD5_gpt_neo

This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3814
- Bleu: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05

- train_batch_size: 2

- eval_batch_size: 2

- seed: 42

- gradient_accumulation_steps: 2

- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5



### Training results



| Training Loss | Epoch  | Step | Validation Loss | Bleu |

|:-------------:|:------:|:----:|:---------------:|:----:|

| No log        | 0.9091 | 5    | 7.9635          | 0.0  |

| No log        | 2.0    | 11   | 5.3680          | 0.0  |

| No log        | 2.9091 | 16   | 4.0323          | 0.0  |

| No log        | 4.0    | 22   | 3.4255          | 0.0  |

| No log        | 4.5455 | 25   | 3.3814          | 0.0  |





### Framework versions



- Transformers 4.46.0

- Pytorch 2.5.0+cu121

- Datasets 3.0.2

- Tokenizers 0.20.1