Update README.md
Browse files
README.md
CHANGED
@@ -16,9 +16,9 @@ tags:
|
|
16 |
|
17 |
## 简介 Brief Introduction
|
18 |
|
19 |
-
|
20 |
|
21 |
-
|
22 |
|
23 |
## 模型分类 Model Taxonomy
|
24 |
|
@@ -49,10 +49,10 @@ avoiding problems in commonly used large generative models such as FLAN. It not
|
|
49 |
|
50 |
```python3
|
51 |
import argparse
|
52 |
-
from fengshen.pipelines.multiplechoice import
|
53 |
|
54 |
total_parser = argparse.ArgumentParser("TASK NAME")
|
55 |
-
total_parser =
|
56 |
args = total_parser.parse_args()
|
57 |
|
58 |
pretrained_model_path = 'IDEA-CCNL/Erlangshen-UniMC-Albert-235M-English'
|
@@ -62,7 +62,7 @@ args.max_length=512
|
|
62 |
args.max_epochs=3
|
63 |
args.batchsize=8
|
64 |
args.default_root_dir='./'
|
65 |
-
model =
|
66 |
|
67 |
train_data = []
|
68 |
dev_data = []
|
|
|
16 |
|
17 |
## 简介 Brief Introduction
|
18 |
|
19 |
+
UniMC 核心思想是将自然语言理解任务转化为 multiple choice 任务,并且使用多个 NLU 任务来进行预训练。我们在英文数据集实验结果表明仅含有 2.35 亿参数的 [ALBERT模型](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-Albert-235M-English)的zero-shot性能可以超越众多千亿的模型。并在中文测评基准 FewCLUE 和 ZeroCLUE 两个榜单中,13亿的[二郎神](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-MegatronBERT-1.3B-Chinese)获得了第一的成绩。
|
20 |
|
21 |
+
The core idea of UniMC is to convert natural language understanding tasks into multiple choice tasks and use multiple NLU tasks for pre-training. Our experimental results on the English dataset show that the zero-shot performance of a [ALBERT](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-Albert-235M-English) model with only 235 million parameters can surpass that of many hundreds of billions of models. And in the Chinese evaluation benchmarks FewCLUE and ZeroCLUE two lists, 1.3 billion [Erlangshen](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-MegatronBERT-1.3B-Chinese) won the first result.
|
22 |
|
23 |
## 模型分类 Model Taxonomy
|
24 |
|
|
|
49 |
|
50 |
```python3
|
51 |
import argparse
|
52 |
+
from fengshen.pipelines.multiplechoice import UniMCPipelines
|
53 |
|
54 |
total_parser = argparse.ArgumentParser("TASK NAME")
|
55 |
+
total_parser = UniMCPipelines.piplines_args(total_parser)
|
56 |
args = total_parser.parse_args()
|
57 |
|
58 |
pretrained_model_path = 'IDEA-CCNL/Erlangshen-UniMC-Albert-235M-English'
|
|
|
62 |
args.max_epochs=3
|
63 |
args.batchsize=8
|
64 |
args.default_root_dir='./'
|
65 |
+
model = UniMCPipelines(args, model_path=pretrained_model_path)
|
66 |
|
67 |
train_data = []
|
68 |
dev_data = []
|