suolyer commited on
Commit
e2baf8f
1 Parent(s): d141c06

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -16,9 +16,9 @@ tags:
16
 
17
  ## 简介 Brief Introduction
18
 
19
- 将自然语言理解任务转化为multiple choice任务,并且使用14个机器阅读理解数据进行预训练
20
 
21
- Convert natural language understanding tasks into multiple choice tasks, and use 14 machine reading comprehension data for pre-training
22
 
23
  ## 模型分类 Model Taxonomy
24
 
@@ -49,10 +49,10 @@ avoiding problems in commonly used large generative models such as FLAN. It not
49
 
50
  ```python3
51
  import argparse
52
- from fengshen.pipelines.multiplechoice import UniMCPiplines
53
 
54
  total_parser = argparse.ArgumentParser("TASK NAME")
55
- total_parser = UniMCPiplines.piplines_args(total_parser)
56
  args = total_parser.parse_args()
57
 
58
  pretrained_model_path = 'IDEA-CCNL/Erlangshen-UniMC-Albert-235M-English'
@@ -62,7 +62,7 @@ args.max_length=512
62
  args.max_epochs=3
63
  args.batchsize=8
64
  args.default_root_dir='./'
65
- model = UniMCPiplines(args, model_path=pretrained_model_path)
66
 
67
  train_data = []
68
  dev_data = []
 
16
 
17
  ## 简介 Brief Introduction
18
 
19
+ UniMC 核心思想是将自然语言理解任务转化为 multiple choice 任务,并且使用多个 NLU 任务来进行预训练。我们在英文数据集实验结果表明仅含有 2.35 亿参数的 [ALBERT模型](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-Albert-235M-English)的zero-shot性能可以超越众多千亿的模型。并在中文测评基准 FewCLUE 和 ZeroCLUE 两个榜单中,13亿的[二郎神](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-MegatronBERT-1.3B-Chinese)获得了第一的成绩。
20
 
21
+ The core idea of UniMC is to convert natural language understanding tasks into multiple choice tasks and use multiple NLU tasks for pre-training. Our experimental results on the English dataset show that the zero-shot performance of a [ALBERT](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-Albert-235M-English) model with only 235 million parameters can surpass that of many hundreds of billions of models. And in the Chinese evaluation benchmarks FewCLUE and ZeroCLUE two lists, 1.3 billion [Erlangshen](https://huggingface.co/IDEA-CCNL/Erlangshen-UniMC-MegatronBERT-1.3B-Chinese) won the first result.
22
 
23
  ## 模型分类 Model Taxonomy
24
 
 
49
 
50
  ```python3
51
  import argparse
52
+ from fengshen.pipelines.multiplechoice import UniMCPipelines
53
 
54
  total_parser = argparse.ArgumentParser("TASK NAME")
55
+ total_parser = UniMCPipelines.piplines_args(total_parser)
56
  args = total_parser.parse_args()
57
 
58
  pretrained_model_path = 'IDEA-CCNL/Erlangshen-UniMC-Albert-235M-English'
 
62
  args.max_epochs=3
63
  args.batchsize=8
64
  args.default_root_dir='./'
65
+ model = UniMCPipelines(args, model_path=pretrained_model_path)
66
 
67
  train_data = []
68
  dev_data = []