suolyer commited on
Commit
551b351
1 Parent(s): c02b8e8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -13
README.md CHANGED
@@ -12,14 +12,14 @@ tags:
12
  # Erlangshen-RoBERTa-110M-UniMC-Chinese
13
 
14
  - Paper: [Zero-Shot Learners for Nature Language Understanding via a Unified Multiple Choice Perspective](https://github.com/IDEA-CCNL/Fengshenbang-LM)
15
- - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)
16
  - Docs: [Fengshenbang-Docs](https://fengshenbang-doc.readthedocs.io/)
17
 
18
  ## 简介 Brief Introduction
19
 
20
- 将自然语言理解任务转化为multiple choice任务,并且使用40个NLU 任务进行预训练
21
 
22
- Convert natural language understanding tasks into multiple choice tasks, and use 40 NLU task for pre-training
23
 
24
  ## 模型分类 Model Taxonomy
25
 
@@ -37,16 +37,41 @@ avoiding problems in commonly used large generative models such as FLAN. It not
37
 
38
  ### 下游效果 Performance
39
 
40
- **Zero-Shot Classification**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
- | Model | T0 11B | GLaM 60B | FLAN 137B | PaLM 540B | UniMC 235M |
43
- |---------|--------|----------|-----------|-----------|------------|
44
- | ANLI R1 | 43.6 | 40.9 | 47.7 | 48.4 | 52.0 |
45
- | ANLI R2 | 38.7 | 38.2 | 43.9 | 44.2 | 44.4 |
46
- | ANLI R3 | 41.3 | 40.9 | 47.0 | 45.7 | 47.8 |
47
- | CB | 70.1 | 33.9 | 64.1 | 51.8 | 75.7 |
48
 
49
  ## 使用 Usage
 
 
 
 
 
 
50
 
51
  ```python3
52
  import argparse
@@ -57,6 +82,12 @@ total_parser = argparse.ArgumentParser("TASK NAME")
57
  total_parser = UniMCPiplines.piplines_args(total_parser)
58
  args = total_parser.parse_args()
59
  args.pretrained_model_path = 'IDEA-CCNL/Erlangshen-RoBERTa-110M-UniMC-Chinese'
 
 
 
 
 
 
60
 
61
  train_data = []
62
  dev_data = []
@@ -75,9 +106,6 @@ test_data = [
75
  "id": 7759}
76
  ]
77
 
78
-
79
- model = UniMCPiplines(args)
80
-
81
  if args.train:
82
  model.fit(train_data, dev_data)
83
  result = model.predict(test_data)
 
12
  # Erlangshen-RoBERTa-110M-UniMC-Chinese
13
 
14
  - Paper: [Zero-Shot Learners for Nature Language Understanding via a Unified Multiple Choice Perspective](https://github.com/IDEA-CCNL/Fengshenbang-LM)
15
+ - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM/blob/main/fengshen/examples/unimc/)
16
  - Docs: [Fengshenbang-Docs](https://fengshenbang-doc.readthedocs.io/)
17
 
18
  ## 简介 Brief Introduction
19
 
20
+ 将自然语言理解任务转化为multiple choice任务,并且使用42个NLU 任务进行预训练
21
 
22
+ Convert natural language understanding tasks into multiple choice tasks, and use 42 NLU task for pre-training
23
 
24
  ## 模型分类 Model Taxonomy
25
 
 
37
 
38
  ### 下游效果 Performance
39
 
40
+ **Few-shot**
41
+ | Model | eprstmt | csldcp | tnews | iflytek | ocnli | bustm | chid | csl | wsc | Avg |
42
+ |------------|------------|----------|-----------|----------|-----------|-----------|-----------|----------|-----------|-----------|
43
+ | Finetuning | 65.4 | 35.5 | 49 | 32.8 | 33 | 60.7 | 14.9 | 50 | 55.6 | 44.1 |
44
+ | PET | 86.7 | 51.7 | 54.5 | 46 | 44 | 56 | 61.2 | 59.4 | 57.5 | 57.44 |
45
+ | LM-BFF | 85.6 | 54.4 | 53 | 47.1 | 41.6 | 57.6 | 61.2 | 51.7 | 54.7 | 56.32 |
46
+ | P-tuning | 88.3 | 56 | 54.2 | **57.6** | 41.9 | 60.9 | 59.3 | **62.9** | 58.1 | 59.91 |
47
+ | EFL | 84.9 | 45 | 52.1 | 42.7 | 66.2 | 71.8 | 30.9 | 56.6 | 53 | 55.91 |
48
+ | [UniMC-110M](https://huggingface.co/IDEA-CCNL/Erlangshen-RoBERTa-110M-UniMC-Chinese) | 88.64 | 54.08 | 54.32 | 48.6 | 66.55 | 73.76 | 67.71 | 52.54 | 59.92 | 62.86 |
49
+ | [UniMC-330M](https://huggingface.co/IDEA-CCNL/Erlangshen-RoBERTa-330M-UniMC-Chinese) | 89.53 | 57.3 | 54.25 | 50 | 70.59 | 77.49 | 78.09 | 55.73 | 65.16 | 66.46 |
50
+ | [UniMC-1.3B](https://huggingface.co/IDEA-CCNL/Erlangshen-MegatronBERT-1.3B-UniMC-Chinese) | **89.278** | **60.9** | **57.46** | 52.89 | **76.33** | **80.37** | **90.33** | 61.73 | **79.15** | **72.05** |
51
+
52
+ **Zero-shot**
53
+
54
+ | Model | eprstmt | csldcp | tnews | iflytek | ocnli | bustm | chid | csl | wsc | Avg |
55
+ |---------------|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|-----------|-----------|
56
+ | GPT-zero | 57.5 | 26.2 | 37 | 19 | 34.4 | 50 | 65.6 | 50.1 | 50.3 | 43.4 |
57
+ | PET-zero | 85.2 | 12.6 | 26.1 | 26.6 | 40.3 | 50.6 | 57.6 | 52.2 | 54.7 | 45.1 |
58
+ | NSP-BERT | 86.9 | 47.6 | 51 | 41.6 | 37.4 | 63.4 | 52 | **64.4** | 59.4 | 55.96 |
59
+ | ZeroPrompt | - | - | - | 16.14 | 46.16 | - | - | - | 47.98 | - |
60
+ | Yuan1.0-13B | 88.13 | 38.99 | 57.47 | 38.82 | 48.13 | 59.38 | 86.14 | 50 | 38.99 | 56.22 |
61
+ | ERNIE3.0-240B | 88.75 | **50.97** | **57.83** | **40.42** | 53.57 | 64.38 | 87.13 | 56.25 | 53.46 | 61.41 |
62
+ | [UniMC-110M](https://huggingface.co/IDEA-CCNL/Erlangshen-RoBERTa-110M-UniMC-Chinese) | 86.16 | 31.26 | 46.61 | 26.54 | 66.91 | 73.34 | 66.68 | 50.09 | 53.66 | 55.7 |
63
+ | [UniMC-330M](https://huggingface.co/IDEA-CCNL/Erlangshen-RoBERTa-330M-UniMC-Chinese) | 87.5 | 30.4 | 47.6 | 31.5 | 69.9 | 75.9 | 78.17 | 49.5 | 60.55 | 59.01 |
64
+ | [UniMC-1.3B](https://huggingface.co/IDEA-CCNL/Erlangshen-MegatronBERT-1.3B-UniMC-Chinese) | **88.79** | 42.06 | 55.21 | 33.93 | **75.57** | **79.5** | **89.4** | 50.25 | **66.67** | **64.53** |
65
+
66
 
 
 
 
 
 
 
67
 
68
  ## 使用 Usage
69
+ ```shell
70
+ git clone https://github.com/IDEA-CCNL/Fengshenbang-LM.git
71
+ cd Fengshenbang-LM
72
+ pip install --editable .
73
+ ```
74
+
75
 
76
  ```python3
77
  import argparse
 
82
  total_parser = UniMCPiplines.piplines_args(total_parser)
83
  args = total_parser.parse_args()
84
  args.pretrained_model_path = 'IDEA-CCNL/Erlangshen-RoBERTa-110M-UniMC-Chinese'
85
+ args.learning_rate=2e-5
86
+ args.max_length=512
87
+ args.max_epochs=3
88
+ args.batchsize=8
89
+ args.default_root_dir='./'
90
+ model = UniMCPiplines(args)
91
 
92
  train_data = []
93
  dev_data = []
 
106
  "id": 7759}
107
  ]
108
 
 
 
 
109
  if args.train:
110
  model.fit(train_data, dev_data)
111
  result = model.predict(test_data)