Upload configuration_deltalm.py
Browse files- configuration_deltalm.py +170 -0
configuration_deltalm.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
""" deltalm model configuration"""
|
5 |
+
|
6 |
+
import warnings
|
7 |
+
from transformers.configuration_utils import PretrainedConfig
|
8 |
+
from transformers.utils import logging
|
9 |
+
logger = logging.get_logger(__name__)
|
10 |
+
|
11 |
+
BART_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
12 |
+
"IDEA/Deltalm": "https://huggingface.co/facebook/bart-large/resolve/main/config.json",
|
13 |
+
# See all deltalm models at https://huggingface.co/models?filter=deltam
|
14 |
+
}
|
15 |
+
|
16 |
+
|
17 |
+
class DeltalmConfig(PretrainedConfig):
|
18 |
+
r"""
|
19 |
+
This is the configuration class to store the configuration of a [`DeltalmModel`]. It is used to instantiate a Deltalm
|
20 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
21 |
+
defaults will yield a similar configuration to that of the BART
|
22 |
+
[facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture.
|
23 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
24 |
+
documentation from [`PretrainedConfig`] for more information.
|
25 |
+
Args:
|
26 |
+
vocab_size (`int`, *optional*, defaults to 50265):
|
27 |
+
Vocabulary size of the BART model. Defines the number of different tokens that can be represented by the
|
28 |
+
`inputs_ids` passed when calling [`BartModel`] or [`TFBartModel`].
|
29 |
+
d_model (`int`, *optional*, defaults to 1024):
|
30 |
+
Dimensionality of the layers and the pooler layer.
|
31 |
+
encoder_layers (`int`, *optional*, defaults to 12):
|
32 |
+
Number of encoder layers.
|
33 |
+
decoder_layers (`int`, *optional*, defaults to 12):
|
34 |
+
Number of decoder layers.
|
35 |
+
encoder_attention_heads (`int`, *optional*, defaults to 16):
|
36 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
37 |
+
decoder_attention_heads (`int`, *optional*, defaults to 16):
|
38 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
39 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
40 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
41 |
+
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
42 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
43 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
44 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
45 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
46 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
47 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
48 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
49 |
+
The dropout ratio for the attention probabilities.
|
50 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
51 |
+
The dropout ratio for activations inside the fully connected layer.
|
52 |
+
classifier_dropout (`float`, *optional*, defaults to 0.0):
|
53 |
+
The dropout ratio for classifier.
|
54 |
+
max_position_embeddings (`int`, *optional*, defaults to 1024):
|
55 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
56 |
+
just in case (e.g., 512 or 1024 or 2048).
|
57 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
58 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
59 |
+
encoder_layerdrop: (`float`, *optional*, defaults to 0.0):
|
60 |
+
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
61 |
+
for more details.
|
62 |
+
decoder_layerdrop: (`float`, *optional*, defaults to 0.0):
|
63 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
64 |
+
for more details.
|
65 |
+
scale_embedding (`bool`, *optional*, defaults to `False`):
|
66 |
+
Scale embeddings by diving by sqrt(d_model).
|
67 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
68 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
69 |
+
num_labels: (`int`, *optional*, defaults to 3):
|
70 |
+
The number of labels to use in [`BartForSequenceClassification`].
|
71 |
+
forced_eos_token_id (`int`, *optional*, defaults to 2):
|
72 |
+
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
|
73 |
+
`eos_token_id`.
|
74 |
+
Example:
|
75 |
+
```python
|
76 |
+
>>> from transformers import BartModel, BartConfig
|
77 |
+
>>> # Initializing a BART facebook/bart-large style configuration
|
78 |
+
>>> configuration = BartConfig()
|
79 |
+
>>> # Initializing a model from the facebook/bart-large style configuration
|
80 |
+
>>> model = BartModel(configuration)
|
81 |
+
>>> # Accessing the model configuration
|
82 |
+
>>> configuration = model.config
|
83 |
+
```"""
|
84 |
+
model_type = "Deltalm"
|
85 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
86 |
+
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
|
87 |
+
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
vocab_size=250001,
|
91 |
+
max_position_embeddings=1024,
|
92 |
+
encoder_layers=12,
|
93 |
+
encoder_ffn_dim=3072,
|
94 |
+
encoder_attention_heads=12,
|
95 |
+
decoder_layers=6,
|
96 |
+
decoder_ffn_dim=3072,
|
97 |
+
decoder_attention_heads=12,
|
98 |
+
encoder_layerdrop=0.0,
|
99 |
+
decoder_layerdrop=0.0,
|
100 |
+
activation_function="gelu",
|
101 |
+
d_model=1024,
|
102 |
+
dropout=0.1,
|
103 |
+
attention_dropout=0.0,
|
104 |
+
activation_dropout=0.0,
|
105 |
+
init_std=0.02,
|
106 |
+
classifier_dropout=0.0,
|
107 |
+
scale_embedding=False,
|
108 |
+
use_cache=True,
|
109 |
+
num_labels=3,
|
110 |
+
pad_token_id=1,
|
111 |
+
bos_token_id=0,
|
112 |
+
eos_token_id=2,
|
113 |
+
is_encoder_decoder=True,
|
114 |
+
decoder_start_token_id=0,
|
115 |
+
forced_eos_token_id=2,
|
116 |
+
label_smoothing=0.1,
|
117 |
+
length_penalty=1.0,
|
118 |
+
encoder_normalize_before=False,
|
119 |
+
**kwargs
|
120 |
+
):
|
121 |
+
self.vocab_size = vocab_size
|
122 |
+
self.max_position_embeddings = max_position_embeddings
|
123 |
+
self.d_model = d_model
|
124 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
125 |
+
self.encoder_layers = encoder_layers
|
126 |
+
self.encoder_attention_heads = encoder_attention_heads
|
127 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
128 |
+
self.decoder_layers = decoder_layers
|
129 |
+
self.decoder_attention_heads = decoder_attention_heads
|
130 |
+
self.dropout = dropout
|
131 |
+
self.attention_dropout = attention_dropout
|
132 |
+
self.activation_dropout = activation_dropout
|
133 |
+
self.activation_function = activation_function
|
134 |
+
self.init_std = init_std
|
135 |
+
self.encoder_layerdrop = encoder_layerdrop
|
136 |
+
self.decoder_layerdrop = decoder_layerdrop
|
137 |
+
self.classifier_dropout = classifier_dropout
|
138 |
+
self.use_cache = use_cache
|
139 |
+
self.num_hidden_layers = encoder_layers
|
140 |
+
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
141 |
+
self.label_smoothing = label_smoothing
|
142 |
+
self.encoder_normalize_before = encoder_normalize_before
|
143 |
+
|
144 |
+
super().__init__(
|
145 |
+
num_labels=num_labels,
|
146 |
+
pad_token_id=pad_token_id,
|
147 |
+
bos_token_id=bos_token_id,
|
148 |
+
eos_token_id=eos_token_id,
|
149 |
+
is_encoder_decoder=is_encoder_decoder,
|
150 |
+
decoder_start_token_id=decoder_start_token_id,
|
151 |
+
forced_eos_token_id=forced_eos_token_id,
|
152 |
+
length_penalty=length_penalty,
|
153 |
+
**kwargs,
|
154 |
+
)
|
155 |
+
|
156 |
+
# ensure backward compatibility for BART CNN models
|
157 |
+
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
|
158 |
+
self.forced_bos_token_id = self.bos_token_id
|
159 |
+
warnings.warn(
|
160 |
+
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
|
161 |
+
"The config can simply be saved and uploaded again to be fixed."
|
162 |
+
)
|
163 |
+
|
164 |
+
@property
|
165 |
+
def num_attention_heads(self) -> int:
|
166 |
+
return self.encoder_attention_heads
|
167 |
+
|
168 |
+
@property
|
169 |
+
def hidden_size(self) -> int:
|
170 |
+
return self.d_model
|