File size: 7,359 Bytes
45bdd7d
 
4036575
45bdd7d
 
24bb8e9
45bdd7d
 
4036575
b3516cc
45bdd7d
 
 
 
 
 
 
 
 
a5f4413
45bdd7d
bfdf00b
45bdd7d
 
 
 
c375645
45bdd7d
 
 
 
 
 
 
 
 
 
 
 
 
 
c375645
45bdd7d
 
 
ea78d66
45bdd7d
ea78d66
 
 
 
 
 
 
 
 
 
 
 
 
45bdd7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c375645
45bdd7d
7389909
45bdd7d
 
 
 
 
 
 
 
 
 
 
876e2dc
d0bc3bc
 
 
 
45bdd7d
7389909
45bdd7d
 
 
 
 
7bcec98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45bdd7d
 
6705718
45bdd7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6705718
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
---
license: creativeml-openrail-m
language: zh
tags:
- stable-diffusion
- stable diffusion chinese
- stable-diffusion-diffusers
- text-to-image
- Chinese
inference: true
extra_gated_prompt: |-
  One more step before getting this model.
  This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage.
  The CreativeML OpenRAIL License specifies: 

  1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 
  2. IDEA-CCNL claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license
  3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully)
  Please read the full license here: https://huggingface.co/spaces/CompVis/stable-diffusion-license

  By clicking on "Access repository" below, you accept that your *contact information* (email address and username) can be shared with the model authors as well.

extra_gated_fields:
 I have read the License and agree with its terms: checkbox
---

# Taiyi-Stable-Diffusion-1B-Chinese-EN-v0.1

- Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)
- Docs: [Fengshenbang-Docs](https://fengshenbang-doc.readthedocs.io/)

## 简介 Brief Introduction

首个开源的中英双语Stable Diffusion模型,基于0.2亿筛选过的中文图文对训练。

The first open source Chinese&English Bilingual Stable diffusion, which was trained on 20M filtered Chinese image-text pairs.

## 模型分类 Model Taxonomy

|  需求 Demand  | 任务 Task       | 系列 Series      | 模型 Model    | 参数 Parameter | 额外 Extra |
|  :----:  | :----:  | :----:  | :----:  | :----:  | :----:  |
| 特殊 Special | 多模态 Multimodal | 太乙 Taiyi | Stable Diffusion |    1B    |     Chinese and English     |

## 模型信息 Model Information

我们将[Noah-Wukong](https://wukong-dataset.github.io/wukong-dataset/)数据集(100M)和[Zero](https://zero.so.com/)数据集(23M)用作预训练的数据集,先用[IDEA-CCNL/Taiyi-CLIP-RoBERTa-102M-ViT-L-Chinese](https://huggingface.co/IDEA-CCNL/Taiyi-CLIP-RoBERTa-102M-ViT-L-Chinese)对这两个数据集的图文对相似性进行打分,取CLIP Score大于0.2的图文对作为我们的训练集。 我们使用[stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4)([论文](https://arxiv.org/abs/2112.10752))模型进行继续训练,其中训练分为两个stage。

第一个stage中冻住模型的其他部分,只训练text encoder,以便保留原始模型的生成能力且实现中文概念的对齐。

第二个stage中将全部模型解冻,一起训练text encoder和diffusion model,以便diffusion model更好的适配中文guidance。

第一个stage我们训练了80小时,第二个stage训练了100小时,两个stage都是用了8 x A100。该版本是一个初步的版本,我们将持续优化模型并开源,欢迎交流!

We use [Noah-Wukong](https://wukong-dataset.github.io/wukong-dataset/)(100M) 和 [Zero](https://zero.so.com/)(23M) as our dataset, and take the image and text pairs with CLIP Score (based on [IDEA-CCNL/Taiyi-CLIP-RoBERTa-102M-ViT-L-Chinese](https://huggingface.co/IDEA-CCNL/Taiyi-CLIP-RoBERTa-102M-ViT-L-Chinese)) greater than 0.2 as our Training set. We finetune the [stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4)([paper](https://arxiv.org/abs/2112.10752)) model for two stage. 

Stage 1: To keep the powerful generative capability of stable diffusion and align Chinese concepts with the images, We only train the text encoder and freeze other part of the model in the first stage. 

Stage 2: We unfreeze both the text encoder and the diffusion model, therefore the diffusion model can have a better compatibility for the Chinese language guidance. 

It takes 80 hours to train the first stage, 100 hours to train the second stage, both stages are based on 8 x A100. This model is a preliminary version and we will update this model continuously and open sourse. Welcome to exchange!

### Result

小桥流水人家,Van Gogh style。
![](result_examples/xiaoqiao_vangogh.png)

小桥流水人家,水彩。
![](result_examples/xiaoqiao_oil_painting.png)

吃过桥米线的猫。
![](result_examples/cat_eating_guoqiao_noodle.png)

穿着宇航服的哈士奇。
![](result_examples/huskiy_wearing_space_suit.png)
## 使用 Usage

### 全精度 Full precision

```py
from diffusers import StableDiffusionPipeline

pipe = StableDiffusionPipeline.from_pretrained("IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-EN-v0.1").to("cuda")

prompt = '小桥流水人家,Van Gogh style'
image = pipe(prompt, guidance_scale=10).images[0]  
image.save("小桥.png")
```

### 半精度 Half precision FP16 (CUDA)

添加 `torch_dtype=torch.float16``device_map="auto"` 可以快速加载 FP16 的权重,以加快推理速度。
更多信息见 [the optimization docs](https://huggingface.co/docs/diffusers/main/en/optimization/fp16#half-precision-weights)。

```py
# !pip install git+https://github.com/huggingface/accelerate
from diffusers import StableDiffusionPipeline
import torch
torch.backends.cudnn.benchmark = True
pipe = StableDiffusionPipeline.from_pretrained("IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-EN-v0.1", torch_dtype=torch.float16)
pipe.to('cuda')

prompt = '小桥流水人家,Van Gogh style'
image = pipe(prompt, guidance_scale=10.0).images[0]  
image.save("小桥.png")
```


### 怎样微调 How to finetune

可以参考 refer

https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/examples/finetune_taiyi_stable_diffusion

### webui配置 Configure webui

可以参考 refer

https://github.com/IDEA-CCNL/stable-diffusion-webui/blob/master/README.md

### DreamBooth

https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/examples/stable_diffusion_dreambooth
## 引用 Citation

如果您在您的工作中使用了我们的模型,可以引用我们的[总论文](https://arxiv.org/abs/2209.02970):

If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970):

```text
@article{fengshenbang,
  author    = {Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen and Ruyi Gan and Jiaxing Zhang},
  title     = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence},
  journal   = {CoRR},
  volume    = {abs/2209.02970},
  year      = {2022}
}
```

也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/):

You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/):

```text
@misc{Fengshenbang-LM,
  title={Fengshenbang-LM},
  author={IDEA-CCNL},
  year={2021},
  howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
}
```