Yuan2-M32-hf / yuan_moe_hf_model.py
IEIT-Yuan's picture
hf
f5dbe81
raw
history blame
64.8 kB
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Yuan model."""
import math
from typing import List, Optional, Tuple, Union
import torch.nn.functional as F
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from configuration_yuan import YuanConfig
from einops import rearrange
#from flash_attn import flash_attn_varlen_func as flash_attn_unpadded_func
#from flash_attn import flash_attn_func
import copy
try:
from flash_attn import flash_attn_varlen_func as flash_attn_unpadded_func
from flash_attn import flash_attn_func
except ImportError:
flash_attn_unpadded_func = None
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "YuanConfig"
class LocalizedFiltering(torch.nn.Module):
"""
Mega's Exponential Moving Average layer, largely left unmodified from the original repo with the exception of
variable names and moving away from the stateful representation of incremental decoding state. See
"https://arxiv.org/abs/2209.10655" for more details.
"""
def __init__(self, hidden_size):
super().__init__()
self.embed_dim = hidden_size
self.lf_conv2d_group = 1
self.lf_conv2d_num_pad = 1
self.conv1 = torch.nn.Conv2d(self.embed_dim, self.embed_dim // 2, (2, 1), stride=(1, 1), padding=(self.lf_conv2d_num_pad, 0), groups=self.lf_conv2d_group)
self.conv2 = torch.nn.Conv2d(self.embed_dim // 2, self.embed_dim, (2, 1), stride=(1, 1), padding=(self.lf_conv2d_num_pad, 0), groups=self.lf_conv2d_group)
self.output_layernorm = YuanRMSNorm(self.embed_dim)
def _train_forward(self, inputs):
inputs = inputs.transpose(0,1)
seq_len, bsz, embed_dim = inputs.size()
if embed_dim != self.embed_dim:
raise ValueError(
f"Unexpected embedding dimension received: input is {embed_dim}, model expects {self.embed_dim}"
)
residual = inputs
inputs = inputs.view(seq_len, 1, bsz, embed_dim).permute(2, 3, 0, 1)
output1 = self.conv1(inputs)
output1 = output1[:, :, :seq_len, :]
output2 = self.conv2(output1)
output2 = output2[:, :, :seq_len, :].permute(2, 3, 0, 1).contiguous()
output2 = output2.view(seq_len, bsz, embed_dim)
assert output2.shape == residual.shape
lf_output = self.output_layernorm(output2 + residual)
lf_output = lf_output.transpose(0,1)
return lf_output
def _inference_forward(self, inputs, before_hidden_states):
if before_hidden_states is None:
inputs = inputs.transpose(0,1)
seq_len, bsz, embed_dim = inputs.size()
if embed_dim != self.embed_dim:
raise ValueError(
f"Unexpected embedding dimension received: input is {embed_dim}, model expects {self.embed_dim}"
)
residual = inputs
inputs = inputs.view(seq_len, 1, bsz, embed_dim).permute(2, 3, 0, 1)
output1 = self.conv1(inputs)
output1 = output1[:, :, :seq_len, :]
output2 = self.conv2(output1)
output2 = output2[:, :, :seq_len, :].permute(2, 3, 0, 1).contiguous()
output2 = output2.view(seq_len, bsz, embed_dim)
assert output2.shape == residual.shape
lf_output = self.output_layernorm(output2 + residual)
lf_output = lf_output.transpose(0,1)
return lf_output
else:
inputs = inputs.transpose(0,1)
before_hidden_states = before_hidden_states.transpose(0,1)
residual = inputs
seq_len, bsz, embed_dim = inputs.size()
seq_len_before, _, _ = before_hidden_states.size()
assert seq_len == 1 and seq_len_before == 2
inputs = torch.cat((before_hidden_states, inputs), dim=0)
inputs = inputs.view(3, 1, bsz, embed_dim).permute(2, 3, 0, 1)
output1 = self.conv1(inputs)
output2 = self.conv2(output1[:,:,1:-1,:])
output2 = output2[:,:,1:-1,:]
output2 = output2.view(1, bsz, embed_dim)
assert output2.shape == residual.shape
lf_output = self.output_layernorm(output2 + residual)
lf_output = lf_output.transpose(0,1)
return lf_output
def forward(
self,
inputs,
before_hidden_states
) -> torch.Tensor:
assert self.lf_conv2d_num_pad == 1
if self.training:
lf_output = self._train_forward(inputs)
else:
lf_output = self._inference_forward(inputs, before_hidden_states)
return lf_output
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb_0(q, k, cos, sin, position_ids):
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
rot_dim = sin.shape[-1]
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
q, q_pass = q[..., :rot_dim], q[..., rot_dim:]
k, k_pass = k[..., :rot_dim], k[..., rot_dim:]
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return torch.cat((q_embed, q_pass), dim=-1), torch.cat((k_embed, k_pass), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
#import pdb;pdb.set_trace()
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class YuanRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
YuanRMSNorm is equivalent to LlamaRMSNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class YuanRotaryEmbedding(torch.nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
"""
YuanRotaryEmbedding is equivalent to LlamaRotaryEmbedding in transformers v4.36
"""
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
inv_freq = inv_freq.to(torch.bfloat16)
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
)
# flash attn
class FlashSelfAttention(torch.nn.Module):
"""Implement the scaled dot product attention with softmax.
Arguments
---------
softmax_scale: The temperature to use for the softmax attention.
(default: 1/sqrt(d_keys) where d_keys is computed at
runtime)
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
device=None, dtype=None):
super().__init__()
assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
'e.g., with pip install flash-attn')
assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
self.causal = causal
self.softmax_scale = softmax_scale
self.dropout_p = attention_dropout
def forward(self, q, k, v):
"""Implements the multihead softmax attention.
Arguments
---------
q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
"""
assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q,k,v)))
assert all((i.is_cuda for i in (q,k,v)))
batch_size, seqlen_q = q.shape[0], q.shape[1]
seqlen_k = k.shape[1]
q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
device=q.device)
if self.training:
# during training q,k,v always have same seqlen
assert seqlen_k == seqlen_q
is_causal = self.causal
cu_seqlens_k = cu_seqlens_q
dropout_p = self.dropout_p
else:
# turn off FA causal mask after first inference autoregressive iteration
# only on first autoregressive step q,k,v have same seqlen
is_causal = seqlen_q == seqlen_k
cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32,
device=q.device)
dropout_p = 0
output = flash_attn_unpadded_func(
q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
dropout_p,
softmax_scale=self.softmax_scale, causal=is_causal
)
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
return output
class ParallelAttention_router(nn.Module):
def __init__(self, config):
super(ParallelAttention_router, self).__init__()
layer_number=0
self.layer_number = max(1, layer_number)
self.flash_attn_drop = 0.01
self.hidden_size = config.hidden_size
self.projection_size = config.moe_config['moe_num_experts']
self.query = nn.Linear(self.hidden_size, self.projection_size, bias=False)
self.key = nn.Linear(self.hidden_size, self.projection_size, bias=False)
self.value = nn.Linear(self.hidden_size, self.projection_size, bias=False)
def forward(self, hidden_states, attention_mask=None, enc_position_ids=None,
encoder_output=None, inference_params=None,
rotary_pos_emb=None):
is_first_step = False
before_hidden_states = None
query_layer = self.query(hidden_states)
key_layer = self.key(hidden_states)
value_layer = self.value(hidden_states)
b = query_layer.size(0)
s = query_layer.size(1) # seq*batch = token_num
z = query_layer.size(2) # expert_num
# use fp32 router
query_layer = query_layer.float().view(b,s,z,1)
key_layer = key_layer.float().view(b,s,z,1)
value_layer = value_layer.float().view(b,s,z,1)
attn_weights = torch.matmul(query_layer, key_layer.transpose(2, 3))
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
attn_output = torch.matmul(attn_weights, value_layer)
router_output = attn_output.view(b*s, z)
return router_output
class YuanExpertMLP(nn.Module):
def __init__(self, config):
super(YuanExpertMLP, self).__init__()
self.gated_linear_unit = config.moe_config['gated_linear_unit']
self.ffn_hidden_size = config.moe_config['ffn_hidden_size']
if self.gated_linear_unit:
self.w1 = nn.Linear(config.hidden_size, self.ffn_hidden_size*2, bias=False)
else:
self.w1 = nn.Linear(config.hidden_size, self.ffn_hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
self.w2 = nn.Linear(self.ffn_hidden_size, config.hidden_size, bias=False)
def forward(self, x):
x = self.w1(x)
if self.gated_linear_unit:
x = torch.chunk(x, 2, dim=-1)
x = self.act_fn(x[0]) * x[1]
else:
x = self.act_fn(x)
x = self.w2(x)
return x
class YuanMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str
):
super().__init__()
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
return self.down_proj(self.gate_proj(x) * self.act_fn(self.up_proj(x)))
class YuanAttention(nn.Module):
"""Localized Filtering-based Attention 'YUAN 2.0: A Large Language Model with Localized Filtering-based Attention' paper"""
def __init__(self, config: YuanConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
try:
self.attention_projection_size = config.attention_projection_size
except:
self.attention_projection_size = None
if self.attention_projection_size is None:
self.head_dim = self.hidden_size // self.num_heads
else:
self.head_dim = self.attention_projection_size // self.num_heads
self.max_position_embeddings = config.max_position_embeddings
self.causal_mask = config.causal_mask
self.softmax_scale = 1.0 / math.sqrt(self.head_dim)
self.use_flash_attention = config.use_flash_attention
try:
self.use_shareqk = config.use_shareqk
except Exception as e:
self.use_shareqk=False
self.dropout = 0.0
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
if self.head_dim == self.hidden_size // self.num_heads:
self.rotary_emb = YuanRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
else:
self.rotary_emb = YuanRotaryEmbedding(self.hidden_size // self.num_heads, max_position_embeddings=self.max_position_embeddings)
if self.use_shareqk:
self.qk_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.qk_weight = nn.Parameter(torch.Tensor(2, self.hidden_size))
self.qk_bias = nn.Parameter(torch.Tensor(2, self.hidden_size))
else:
self.lf_gate = LocalizedFiltering(self.hidden_size)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
before_hidden_states = None
is_first_step = False
if use_cache:
if past_key_value is None:
inference_hidden_states_memory = torch.empty(bsz, 2, hidden_states.shape[2], dtype=hidden_states.dtype)
is_first_step = True
else:
before_hidden_states = past_key_value[2]
if use_cache:
if is_first_step:
if q_len >= 2:
inference_hidden_states_memory = hidden_states[ :, -2:, :]
else:
inference_hidden_states_memory[:, :, :] = 0
inference_hidden_states_memory[:, -1:, :] = hidden_states[:, -1:, :]
else:
hidden_states_tmp = before_hidden_states[:, -1:, :]
inference_hidden_states_memory = copy.deepcopy(torch.cat((hidden_states_tmp, hidden_states), dim=1))
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
if self.use_shareqk:
qk_states = self.qk_proj(hidden_states).view(bsz, q_len, self.num_heads*self.head_dim)
query_key = qk_states.unsqueeze(2) * self.qk_weight + self.qk_bias
query_states, key_states = torch.unbind(query_key, dim=2)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
else:
hidden_states = self.lf_gate(hidden_states,before_hidden_states)
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
qk_states = torch.cat([query_states, key_states], dim=-1)
qk_states = qk_states.view(bsz,q_len,self.num_heads,int(qk_states.shape[-1]//self.num_heads))
(query_states,key_states) = torch.chunk(qk_states, 2, dim=-1)
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb_0(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states,inference_hidden_states_memory) if use_cache else None
if self.use_flash_attention:
attn_weights = None
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
batch_size, seqlen_q = query_states.shape[0], query_states.shape[1]
seqlen_k = key_states.shape[1]
q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [query_states, key_states, value_states]]
cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int,
device=q.device)
if self.training:
assert seqlen_k == seqlen_q
cu_seqlens_k = cu_seqlens_q
is_causal = self.causal_mask
else:
is_causal = seqlen_q == seqlen_k
cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int,
device=q.device)
self.dropout=0
output = flash_attn_unpadded_func(
q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k, self.dropout, causal=is_causal
)
attn_output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
else:
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2)
if self.attention_projection_size is None:
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
else:
attn_output = attn_output.reshape(bsz, q_len, self.attention_projection_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class YuanMoeLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.num_experts = config.moe_config['moe_num_experts']
self.top_k = config.moe_config['moe_top_k']
self.norm_topk_prob = config.moe_config['norm_topk_prob']
self.hidden_size = config.hidden_size
self.gate = ParallelAttention_router(config)
self.experts = nn.ModuleList(
[YuanExpertMLP(config) for _ in range(self.num_experts)]
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = hidden_states.shape
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.gate(hidden_states)
hidden_states = hidden_states.view(-1, hidden_dim)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
if self.norm_topk_prob:
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
if top_x.shape[0] == 0:
continue
# in torch it is faster to index using lists than torch tensors
top_x_list = top_x.tolist()
idx_list = idx.tolist()
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]
# However `index_add_` only support torch tensors for indexing so we'll use
# the `top_x` tensor here.
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
class YuanDecoderLayer(nn.Module):
def __init__(self, config: YuanConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = YuanAttention(config=config)
if config.moe_config['moe_num_experts'] > 0:
self.mlp = YuanMoeLayer(config)
else:
self.mlp = YuanMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
)
self.input_layernorm = YuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = YuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states, router_logits = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
YUAN_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`YuanConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Yuan Model outputting raw hidden-states without any specific head on top.",
YUAN_START_DOCSTRING,
)
class YuanPreTrainedModel(PreTrainedModel):
config_class = YuanConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["YuanDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, YuanModel):
module.gradient_checkpointing = value
YUAN_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Yuan Model outputting raw hidden-states without any specific head on top.",
YUAN_START_DOCSTRING,
)
class YuanModel(YuanPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`YuanDecoderLayer`]
Args:
config: YuanConfig
"""
def __init__(self, config: YuanConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
#TODO: control it by config
self.eod_token = config.eod_token
self.reset_attention_mask = config.reset_attention_mask
self.reset_position_ids = config.reset_position_ids
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([YuanDecoderLayer(config) for _ in range(config.num_hidden_layers)])
self.norm = YuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
inputs_embeds.device
)
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
def _prepare_decoder_attention_mask_training(self, input_id, inputs_embeds, eod_token, reset_mask_flag ,reset_attention_mask=True, reset_position_ids=True):
micro_batch_size, seq_length = input_id.size()
attention_mask = torch.tril(torch.ones(
(micro_batch_size, seq_length, seq_length), device=inputs_embeds.device)).view(
micro_batch_size, 1, seq_length, seq_length)
position_ids = torch.arange(seq_length, dtype=torch.long,
device=inputs_embeds.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_id)
if reset_position_ids:
position_ids = position_ids.clone()
if reset_position_ids or reset_attention_mask:
# Loop through the batches:
for b in range(micro_batch_size):
# Find indecies where EOD token is.
eod_index = position_ids[b, input_id[b] == eod_token]
# Detach indecies from positions if going to modify positions.
if reset_position_ids:
eod_index = eod_index.clone()
# Loop through EOD indecies:
prev_index = 0
for j in range(eod_index.size()[0]):
i = eod_index[j]
# Mask attention loss.
if reset_attention_mask:
attention_mask[b, 0, (i + 1):, :(i + 1)] = 0
# Reset positions.
if reset_position_ids:
position_ids[b, (i + 1):] -= (i + 1 - prev_index)
prev_index = i + 1
inverted_mask = 1 - attention_mask
output_attn_mask = inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min)
if reset_mask_flag:
output_attn_mask = output_attn_mask[:,:,-1:,:]
return output_attn_mask, position_ids
@add_start_docstrings_to_model_forward(YUAN_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
input_ids1 = copy.deepcopy(input_ids)
reset_mask_flag = False
if past_key_values:
input_ids = input_ids[:, -1:]
if use_cache:
reset_mask_flag = True
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if self.training or self.reset_position_ids:
attention_mask, _ = self._prepare_decoder_attention_mask_training(input_ids1, inputs_embeds, self.eod_token, reset_mask_flag, self.reset_attention_mask, self.reset_position_ids)
else:
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, None)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
position_ids,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class YuanForCausalLM(YuanPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.eod_token = config.eod_token
self.sep_token = config.sep_token
self.use_loss_mask = config.use_loss_mask
self.model = YuanModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def get_loss_mask(self, input_ids, labels, eod_token, sep_token):
micro_batch_size, seq_length = input_ids.size()
loss_mask = torch.ones(input_ids.size(), dtype=torch.float, device=input_ids.device)
position_ids = torch.arange(seq_length, dtype=torch.long,
device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
"""modify loss_mask to only calculate the loss of the answer (separated with [SEP])"""
for b in range(micro_batch_size):
eod_indexs = position_ids[b, input_ids[b] == eod_token]
sep_indexs = position_ids[b, input_ids[b] == sep_token]
if len(eod_indexs) == 0 or len(sep_indexs) == 0:
loss_mask[b] = 1.0
else:
if eod_indexs[0] > sep_indexs[0]:
loss_mask[b, 0:sep_indexs[0]] = 0
if len(eod_indexs) == len(sep_indexs):
for ii, eod_index in enumerate(eod_indexs):
start_index = eod_index
if ii == (len(sep_indexs) - 1):
stop_index = seq_length
else:
stop_index = sep_indexs[ii + 1]
loss_mask[b, start_index:stop_index] = 0.0
else:
if len(eod_indexs) > len(sep_indexs):
loss_mask[b,:] = 1.0
else:
for ii, eod_index in enumerate(eod_indexs):
start_index = eod_index
stop_index = sep_indexs[ii + 1]
loss_mask[b, start_index:stop_index] = 0.0
elif eod_indexs[0] < sep_indexs[0]:
if len(eod_indexs) == len(sep_indexs):
for ii, eod_index in enumerate(eod_indexs):
start_index = eod_index
stop_index = sep_indexs[ii]
loss_mask[b, start_index:stop_index] = 0.0
else:
if len(eod_indexs) < len(sep_indexs):
loss_mask[b,:] = 1.0
else:
for ii, eod_index in enumerate(eod_indexs):
start_index = eod_index
if ii >= len(sep_indexs):
stop_index = seq_length
else:
stop_index = sep_indexs[ii]
loss_mask[b, start_index:stop_index] = 0.0
loss_mask[input_ids == eod_token] = 1.0
return loss_mask
@add_start_docstrings_to_model_forward(YUAN_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, YuanForCausalLM
>>> model = YuanForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you consciours? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if self.use_loss_mask:
loss_mask = self.get_loss_mask(input_ids, labels, self.eod_token, self.sep_token)
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
if self.use_loss_mask:
loss_fct = CrossEntropyLoss(reduction='none')
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
loss = torch.sum(loss * loss_mask) / loss_mask.sum()
else:
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
return reordered_past
@add_start_docstrings(
"""
The Yuan Model transformer with a sequence classification head on top (linear layer).
[`YuanForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
YUAN_START_DOCSTRING,
)
class YuanForSequenceClassification(YuanPreTrainedModel):
#_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = YuanModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(YUAN_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)