|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch Yuan model.""" |
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
import torch.nn.functional as F |
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings |
|
from .configuration_yuan import YuanConfig |
|
from einops import rearrange |
|
|
|
|
|
|
|
import copy |
|
|
|
try: |
|
from flash_attn import flash_attn_varlen_func as flash_attn_unpadded_func |
|
from flash_attn import flash_attn_func |
|
except ImportError: |
|
flash_attn_unpadded_func = None |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "YuanConfig" |
|
|
|
|
|
class LocalizedFiltering(torch.nn.Module): |
|
""" |
|
Mega's Exponential Moving Average layer, largely left unmodified from the original repo with the exception of |
|
variable names and moving away from the stateful representation of incremental decoding state. See |
|
"https://arxiv.org/abs/2209.10655" for more details. |
|
""" |
|
|
|
def __init__(self, hidden_size): |
|
super().__init__() |
|
|
|
self.embed_dim = hidden_size |
|
self.lf_conv2d_group = 1 |
|
self.lf_conv2d_num_pad = 1 |
|
|
|
self.conv1 = torch.nn.Conv2d(self.embed_dim, self.embed_dim // 2, (2, 1), stride=(1, 1), padding=(self.lf_conv2d_num_pad, 0), groups=self.lf_conv2d_group) |
|
self.conv2 = torch.nn.Conv2d(self.embed_dim // 2, self.embed_dim, (2, 1), stride=(1, 1), padding=(self.lf_conv2d_num_pad, 0), groups=self.lf_conv2d_group) |
|
self.output_layernorm = YuanRMSNorm(self.embed_dim) |
|
|
|
def _train_forward(self, inputs): |
|
inputs = inputs.transpose(0,1) |
|
seq_len, bsz, embed_dim = inputs.size() |
|
if embed_dim != self.embed_dim: |
|
raise ValueError( |
|
f"Unexpected embedding dimension received: input is {embed_dim}, model expects {self.embed_dim}" |
|
) |
|
residual = inputs |
|
|
|
inputs = inputs.view(seq_len, 1, bsz, embed_dim).permute(2, 3, 0, 1) |
|
output1 = self.conv1(inputs) |
|
output1 = output1[:, :, :seq_len, :] |
|
|
|
output2 = self.conv2(output1) |
|
output2 = output2[:, :, :seq_len, :].permute(2, 3, 0, 1).contiguous() |
|
output2 = output2.view(seq_len, bsz, embed_dim) |
|
assert output2.shape == residual.shape |
|
|
|
lf_output = self.output_layernorm(output2 + residual) |
|
lf_output = lf_output.transpose(0,1) |
|
return lf_output |
|
|
|
def _inference_forward(self, inputs, before_hidden_states): |
|
|
|
if before_hidden_states is None: |
|
inputs = inputs.transpose(0,1) |
|
seq_len, bsz, embed_dim = inputs.size() |
|
if embed_dim != self.embed_dim: |
|
raise ValueError( |
|
f"Unexpected embedding dimension received: input is {embed_dim}, model expects {self.embed_dim}" |
|
) |
|
residual = inputs |
|
|
|
inputs = inputs.view(seq_len, 1, bsz, embed_dim).permute(2, 3, 0, 1) |
|
output1 = self.conv1(inputs) |
|
output1 = output1[:, :, :seq_len, :] |
|
|
|
output2 = self.conv2(output1) |
|
output2 = output2[:, :, :seq_len, :].permute(2, 3, 0, 1).contiguous() |
|
output2 = output2.view(seq_len, bsz, embed_dim) |
|
assert output2.shape == residual.shape |
|
|
|
lf_output = self.output_layernorm(output2 + residual) |
|
lf_output = lf_output.transpose(0,1) |
|
return lf_output |
|
else: |
|
inputs = inputs.transpose(0,1) |
|
before_hidden_states = before_hidden_states.transpose(0,1) |
|
residual = inputs |
|
|
|
seq_len, bsz, embed_dim = inputs.size() |
|
seq_len_before, _, _ = before_hidden_states.size() |
|
|
|
assert seq_len == 1 and seq_len_before == 2 |
|
|
|
inputs = torch.cat((before_hidden_states, inputs), dim=0) |
|
inputs = inputs.view(3, 1, bsz, embed_dim).permute(2, 3, 0, 1) |
|
|
|
output1 = self.conv1(inputs) |
|
output2 = self.conv2(output1[:,:,1:-1,:]) |
|
output2 = output2[:,:,1:-1,:] |
|
output2 = output2.view(1, bsz, embed_dim) |
|
assert output2.shape == residual.shape |
|
|
|
lf_output = self.output_layernorm(output2 + residual) |
|
lf_output = lf_output.transpose(0,1) |
|
|
|
return lf_output |
|
|
|
|
|
|
|
def forward( |
|
self, |
|
inputs, |
|
before_hidden_states |
|
) -> torch.Tensor: |
|
assert self.lf_conv2d_num_pad == 1 |
|
if self.training: |
|
lf_output = self._train_forward(inputs) |
|
else: |
|
lf_output = self._inference_forward(inputs, before_hidden_states) |
|
|
|
return lf_output |
|
|
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 |
|
): |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz, tgt_len = input_ids_shape |
|
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device) |
|
mask_cond = torch.arange(mask.size(-1), device=device) |
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) |
|
mask = mask.to(dtype) |
|
|
|
if past_key_values_length > 0: |
|
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) |
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) |
|
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
def apply_rotary_pos_emb_0(q, k, cos, sin, position_ids): |
|
|
|
rot_dim = sin.shape[-1] |
|
|
|
cos = cos.squeeze(1).squeeze(0) |
|
sin = sin.squeeze(1).squeeze(0) |
|
cos = cos[position_ids].unsqueeze(1) |
|
sin = sin[position_ids].unsqueeze(1) |
|
|
|
q, q_pass = q[..., :rot_dim], q[..., rot_dim:] |
|
k, k_pass = k[..., :rot_dim], k[..., rot_dim:] |
|
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
|
return torch.cat((q_embed, q_pass), dim=-1), torch.cat((k_embed, k_pass), dim=-1) |
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids): |
|
|
|
|
|
cos = cos.squeeze(1).squeeze(0) |
|
sin = sin.squeeze(1).squeeze(0) |
|
cos = cos[position_ids].unsqueeze(1) |
|
sin = sin[position_ids].unsqueeze(1) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
class YuanRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
YuanRMSNorm is equivalent to LlamaRMSNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
class YuanRotaryEmbedding(torch.nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
|
|
""" |
|
YuanRotaryEmbedding is equivalent to LlamaRotaryEmbedding in transformers v4.36 |
|
""" |
|
|
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
|
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
inv_freq = inv_freq.to(torch.bfloat16) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), |
|
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
class FlashSelfAttention(torch.nn.Module): |
|
"""Implement the scaled dot product attention with softmax. |
|
Arguments |
|
--------- |
|
softmax_scale: The temperature to use for the softmax attention. |
|
(default: 1/sqrt(d_keys) where d_keys is computed at |
|
runtime) |
|
attention_dropout: The dropout rate to apply to the attention |
|
(default: 0.0) |
|
""" |
|
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0, |
|
device=None, dtype=None): |
|
super().__init__() |
|
assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, ' |
|
'e.g., with pip install flash-attn') |
|
assert rearrange is not None, 'Please install einops first, e.g., with pip install einops' |
|
self.causal = causal |
|
self.softmax_scale = softmax_scale |
|
self.dropout_p = attention_dropout |
|
|
|
def forward(self, q, k, v): |
|
"""Implements the multihead softmax attention. |
|
Arguments |
|
--------- |
|
q, k, v: The tensor containing the query, key, and value. (B, S, H, D) |
|
""" |
|
|
|
assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q,k,v))) |
|
assert all((i.is_cuda for i in (q,k,v))) |
|
|
|
batch_size, seqlen_q = q.shape[0], q.shape[1] |
|
seqlen_k = k.shape[1] |
|
|
|
q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]] |
|
cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, |
|
device=q.device) |
|
|
|
if self.training: |
|
|
|
assert seqlen_k == seqlen_q |
|
|
|
is_causal = self.causal |
|
cu_seqlens_k = cu_seqlens_q |
|
dropout_p = self.dropout_p |
|
else: |
|
|
|
|
|
is_causal = seqlen_q == seqlen_k |
|
cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, |
|
device=q.device) |
|
dropout_p = 0 |
|
|
|
output = flash_attn_unpadded_func( |
|
q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k, |
|
dropout_p, |
|
softmax_scale=self.softmax_scale, causal=is_causal |
|
) |
|
|
|
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) |
|
return output |
|
|
|
|
|
class ParallelAttention_router(nn.Module): |
|
def __init__(self, config): |
|
super(ParallelAttention_router, self).__init__() |
|
layer_number=0 |
|
self.layer_number = max(1, layer_number) |
|
|
|
|
|
self.flash_attn_drop = 0.01 |
|
self.hidden_size = config.hidden_size |
|
self.projection_size = config.moe_config['moe_num_experts'] |
|
|
|
self.query = nn.Linear(self.hidden_size, self.projection_size, bias=False) |
|
self.key = nn.Linear(self.hidden_size, self.projection_size, bias=False) |
|
self.value = nn.Linear(self.hidden_size, self.projection_size, bias=False) |
|
|
|
|
|
def forward(self, hidden_states, attention_mask=None, enc_position_ids=None, |
|
encoder_output=None, inference_params=None, |
|
rotary_pos_emb=None): |
|
is_first_step = False |
|
before_hidden_states = None |
|
|
|
query_layer = self.query(hidden_states) |
|
key_layer = self.key(hidden_states) |
|
value_layer = self.value(hidden_states) |
|
|
|
b = query_layer.size(0) |
|
s = query_layer.size(1) |
|
z = query_layer.size(2) |
|
|
|
|
|
query_layer = query_layer.float().view(b,s,z,1) |
|
key_layer = key_layer.float().view(b,s,z,1) |
|
value_layer = value_layer.float().view(b,s,z,1) |
|
|
|
|
|
attn_weights = torch.matmul(query_layer, key_layer.transpose(2, 3)) |
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
attn_output = torch.matmul(attn_weights, value_layer) |
|
|
|
router_output = attn_output.view(b*s, z) |
|
|
|
return router_output |
|
|
|
class YuanExpertMLP(nn.Module): |
|
def __init__(self, config): |
|
super(YuanExpertMLP, self).__init__() |
|
|
|
self.gated_linear_unit = config.moe_config['gated_linear_unit'] |
|
self.ffn_hidden_size = config.moe_config['ffn_hidden_size'] |
|
|
|
|
|
if self.gated_linear_unit: |
|
self.w1 = nn.Linear(config.hidden_size, self.ffn_hidden_size*2, bias=False) |
|
|
|
|
|
else: |
|
self.w1 = nn.Linear(config.hidden_size, self.ffn_hidden_size, bias=False) |
|
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
self.w2 = nn.Linear(self.ffn_hidden_size, config.hidden_size, bias=False) |
|
|
|
|
|
def forward(self, x): |
|
x = self.w1(x) |
|
if self.gated_linear_unit: |
|
x = torch.chunk(x, 2, dim=-1) |
|
x = self.act_fn(x[0]) * x[1] |
|
else: |
|
x = self.act_fn(x) |
|
x = self.w2(x) |
|
return x |
|
|
|
|
|
|
|
class YuanMLP(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
intermediate_size: int, |
|
hidden_act: str |
|
): |
|
super().__init__() |
|
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) |
|
self.act_fn = ACT2FN[hidden_act] |
|
|
|
def forward(self, x): |
|
return self.down_proj(self.gate_proj(x) * self.act_fn(self.up_proj(x))) |
|
|
|
|
|
class YuanAttention(nn.Module): |
|
"""Localized Filtering-based Attention 'YUAN 2.0: A Large Language Model with Localized Filtering-based Attention' paper""" |
|
|
|
def __init__(self, config: YuanConfig): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
|
|
try: |
|
self.attention_projection_size = config.attention_projection_size |
|
except: |
|
self.attention_projection_size = None |
|
|
|
if self.attention_projection_size is None: |
|
self.head_dim = self.hidden_size // self.num_heads |
|
else: |
|
self.head_dim = self.attention_projection_size // self.num_heads |
|
|
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.causal_mask = config.causal_mask |
|
self.softmax_scale = 1.0 / math.sqrt(self.head_dim) |
|
self.use_flash_attention = config.use_flash_attention |
|
try: |
|
self.use_shareqk = config.use_shareqk |
|
except Exception as e: |
|
self.use_shareqk=False |
|
self.dropout = 0.0 |
|
|
|
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
|
|
if self.head_dim == self.hidden_size // self.num_heads: |
|
self.rotary_emb = YuanRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings) |
|
|
|
else: |
|
self.rotary_emb = YuanRotaryEmbedding(self.hidden_size // self.num_heads, max_position_embeddings=self.max_position_embeddings) |
|
|
|
if self.use_shareqk: |
|
self.qk_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) |
|
self.qk_weight = nn.Parameter(torch.Tensor(2, self.hidden_size)) |
|
self.qk_bias = nn.Parameter(torch.Tensor(2, self.hidden_size)) |
|
else: |
|
self.lf_gate = LocalizedFiltering(self.hidden_size) |
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) |
|
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) |
|
|
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
before_hidden_states = None |
|
is_first_step = False |
|
if use_cache: |
|
if past_key_value is None: |
|
inference_hidden_states_memory = torch.empty(bsz, 2, hidden_states.shape[2], dtype=hidden_states.dtype) |
|
is_first_step = True |
|
else: |
|
before_hidden_states = past_key_value[2] |
|
|
|
if use_cache: |
|
if is_first_step: |
|
if q_len >= 2: |
|
inference_hidden_states_memory = hidden_states[ :, -2:, :] |
|
else: |
|
inference_hidden_states_memory[:, :, :] = 0 |
|
inference_hidden_states_memory[:, -1:, :] = hidden_states[:, -1:, :] |
|
else: |
|
hidden_states_tmp = before_hidden_states[:, -1:, :] |
|
inference_hidden_states_memory = copy.deepcopy(torch.cat((hidden_states_tmp, hidden_states), dim=1)) |
|
|
|
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
if self.use_shareqk: |
|
qk_states = self.qk_proj(hidden_states).view(bsz, q_len, self.num_heads*self.head_dim) |
|
query_key = qk_states.unsqueeze(2) * self.qk_weight + self.qk_bias |
|
query_states, key_states = torch.unbind(query_key, dim=2) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
else: |
|
hidden_states = self.lf_gate(hidden_states,before_hidden_states) |
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
qk_states = torch.cat([query_states, key_states], dim=-1) |
|
qk_states = qk_states.view(bsz,q_len,self.num_heads,int(qk_states.shape[-1]//self.num_heads)) |
|
(query_states,key_states) = torch.chunk(qk_states, 2, dim=-1) |
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
|
|
query_states, key_states = apply_rotary_pos_emb_0(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
past_key_value = (key_states, value_states,inference_hidden_states_memory) if use_cache else None |
|
if self.use_flash_attention: |
|
attn_weights = None |
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
batch_size, seqlen_q = query_states.shape[0], query_states.shape[1] |
|
seqlen_k = key_states.shape[1] |
|
|
|
q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [query_states, key_states, value_states]] |
|
|
|
cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int, |
|
device=q.device) |
|
|
|
if self.training: |
|
assert seqlen_k == seqlen_q |
|
cu_seqlens_k = cu_seqlens_q |
|
is_causal = self.causal_mask |
|
else: |
|
is_causal = seqlen_q == seqlen_k |
|
cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int, |
|
device=q.device) |
|
self.dropout=0 |
|
|
|
output = flash_attn_unpadded_func( |
|
q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k, self.dropout, causal=is_causal |
|
) |
|
|
|
attn_output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) |
|
else: |
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights + attention_mask |
|
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2) |
|
|
|
if self.attention_projection_size is None: |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
else: |
|
attn_output = attn_output.reshape(bsz, q_len, self.attention_projection_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
|
|
class YuanMoeLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.num_experts = config.moe_config['moe_num_experts'] |
|
self.top_k = config.moe_config['moe_top_k'] |
|
self.norm_topk_prob = config.moe_config['norm_topk_prob'] |
|
self.hidden_size = config.hidden_size |
|
|
|
|
|
self.gate = ParallelAttention_router(config) |
|
self.experts = nn.ModuleList( |
|
[YuanExpertMLP(config) for _ in range(self.num_experts)] |
|
) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
batch_size, sequence_length, hidden_dim = hidden_states.shape |
|
|
|
|
|
router_logits = self.gate(hidden_states) |
|
hidden_states = hidden_states.view(-1, hidden_dim) |
|
|
|
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) |
|
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) |
|
if self.norm_topk_prob: |
|
routing_weights /= routing_weights.sum(dim=-1, keepdim=True) |
|
|
|
routing_weights = routing_weights.to(hidden_states.dtype) |
|
|
|
final_hidden_states = torch.zeros( |
|
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device |
|
) |
|
|
|
|
|
|
|
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) |
|
|
|
|
|
for expert_idx in range(self.num_experts): |
|
expert_layer = self.experts[expert_idx] |
|
idx, top_x = torch.where(expert_mask[expert_idx]) |
|
|
|
if top_x.shape[0] == 0: |
|
continue |
|
|
|
|
|
top_x_list = top_x.tolist() |
|
idx_list = idx.tolist() |
|
|
|
|
|
|
|
|
|
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim) |
|
current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None] |
|
|
|
|
|
|
|
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) |
|
|
|
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) |
|
return final_hidden_states, router_logits |
|
|
|
|
|
class YuanDecoderLayer(nn.Module): |
|
def __init__(self, config: YuanConfig): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = YuanAttention(config=config) |
|
|
|
if config.moe_config['moe_num_experts'] > 0: |
|
self.mlp = YuanMoeLayer(config) |
|
else: |
|
self.mlp = YuanMLP( |
|
hidden_size=self.hidden_size, |
|
intermediate_size=config.intermediate_size, |
|
hidden_act=config.hidden_act, |
|
) |
|
|
|
|
|
self.input_layernorm = YuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = YuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
""" |
|
residual = hidden_states |
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
|
hidden_states, router_logits = self.mlp(hidden_states) |
|
|
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
YUAN_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`YuanConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Yuan Model outputting raw hidden-states without any specific head on top.", |
|
YUAN_START_DOCSTRING, |
|
) |
|
class YuanPreTrainedModel(PreTrainedModel): |
|
config_class = YuanConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["YuanDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"] |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, YuanModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
YUAN_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Yuan Model outputting raw hidden-states without any specific head on top.", |
|
YUAN_START_DOCSTRING, |
|
) |
|
class YuanModel(YuanPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`YuanDecoderLayer`] |
|
|
|
Args: |
|
config: YuanConfig |
|
""" |
|
|
|
def __init__(self, config: YuanConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.eod_token = config.eod_token |
|
self.reset_attention_mask = config.reset_attention_mask |
|
self.reset_position_ids = config.reset_position_ids |
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList([YuanDecoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.norm = YuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
|
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): |
|
|
|
|
|
combined_attention_mask = None |
|
if input_shape[-1] > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( |
|
inputs_embeds.device |
|
) |
|
combined_attention_mask = ( |
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
def _prepare_decoder_attention_mask_training(self, input_id, inputs_embeds, eod_token, reset_mask_flag ,reset_attention_mask=True, reset_position_ids=True): |
|
|
|
micro_batch_size, seq_length = input_id.size() |
|
|
|
attention_mask = torch.tril(torch.ones( |
|
(micro_batch_size, seq_length, seq_length), device=inputs_embeds.device)).view( |
|
micro_batch_size, 1, seq_length, seq_length) |
|
|
|
position_ids = torch.arange(seq_length, dtype=torch.long, |
|
device=inputs_embeds.device) |
|
position_ids = position_ids.unsqueeze(0).expand_as(input_id) |
|
|
|
if reset_position_ids: |
|
position_ids = position_ids.clone() |
|
|
|
if reset_position_ids or reset_attention_mask: |
|
|
|
for b in range(micro_batch_size): |
|
|
|
|
|
eod_index = position_ids[b, input_id[b] == eod_token] |
|
|
|
|
|
if reset_position_ids: |
|
eod_index = eod_index.clone() |
|
|
|
prev_index = 0 |
|
for j in range(eod_index.size()[0]): |
|
i = eod_index[j] |
|
|
|
if reset_attention_mask: |
|
attention_mask[b, 0, (i + 1):, :(i + 1)] = 0 |
|
|
|
if reset_position_ids: |
|
position_ids[b, (i + 1):] -= (i + 1 - prev_index) |
|
prev_index = i + 1 |
|
|
|
inverted_mask = 1 - attention_mask |
|
output_attn_mask = inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min) |
|
if reset_mask_flag: |
|
output_attn_mask = output_attn_mask[:,:,-1:,:] |
|
return output_attn_mask, position_ids |
|
|
|
@add_start_docstrings_to_model_forward(YUAN_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_router_logits = ( |
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
input_ids1 = copy.deepcopy(input_ids) |
|
reset_mask_flag = False |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
if use_cache: |
|
reset_mask_flag = True |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
|
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
|
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
if self.training or self.reset_position_ids: |
|
attention_mask, _ = self._prepare_decoder_attention_mask_training(input_ids1, inputs_embeds, self.eod_token, reset_mask_flag, self.reset_attention_mask, self.reset_position_ids) |
|
|
|
else: |
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
attention_mask = self._prepare_decoder_attention_mask( |
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, output_attentions, None) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
None, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class YuanForCausalLM(YuanPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.eod_token = config.eod_token |
|
self.sep_token = config.sep_token |
|
self.use_loss_mask = config.use_loss_mask |
|
self.model = YuanModel(config) |
|
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def get_loss_mask(self, input_ids, labels, eod_token, sep_token): |
|
micro_batch_size, seq_length = input_ids.size() |
|
loss_mask = torch.ones(input_ids.size(), dtype=torch.float, device=input_ids.device) |
|
|
|
position_ids = torch.arange(seq_length, dtype=torch.long, |
|
device=input_ids.device) |
|
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) |
|
|
|
|
|
"""modify loss_mask to only calculate the loss of the answer (separated with [SEP])""" |
|
|
|
for b in range(micro_batch_size): |
|
eod_indexs = position_ids[b, input_ids[b] == eod_token] |
|
sep_indexs = position_ids[b, input_ids[b] == sep_token] |
|
|
|
if len(eod_indexs) == 0 or len(sep_indexs) == 0: |
|
loss_mask[b] = 1.0 |
|
else: |
|
if eod_indexs[0] > sep_indexs[0]: |
|
loss_mask[b, 0:sep_indexs[0]] = 0 |
|
|
|
if len(eod_indexs) == len(sep_indexs): |
|
for ii, eod_index in enumerate(eod_indexs): |
|
start_index = eod_index |
|
if ii == (len(sep_indexs) - 1): |
|
stop_index = seq_length |
|
else: |
|
stop_index = sep_indexs[ii + 1] |
|
loss_mask[b, start_index:stop_index] = 0.0 |
|
else: |
|
if len(eod_indexs) > len(sep_indexs): |
|
loss_mask[b,:] = 1.0 |
|
else: |
|
for ii, eod_index in enumerate(eod_indexs): |
|
start_index = eod_index |
|
stop_index = sep_indexs[ii + 1] |
|
|
|
loss_mask[b, start_index:stop_index] = 0.0 |
|
|
|
elif eod_indexs[0] < sep_indexs[0]: |
|
|
|
if len(eod_indexs) == len(sep_indexs): |
|
for ii, eod_index in enumerate(eod_indexs): |
|
start_index = eod_index |
|
stop_index = sep_indexs[ii] |
|
loss_mask[b, start_index:stop_index] = 0.0 |
|
|
|
else: |
|
if len(eod_indexs) < len(sep_indexs): |
|
loss_mask[b,:] = 1.0 |
|
else: |
|
for ii, eod_index in enumerate(eod_indexs): |
|
start_index = eod_index |
|
if ii >= len(sep_indexs): |
|
stop_index = seq_length |
|
else: |
|
stop_index = sep_indexs[ii] |
|
loss_mask[b, start_index:stop_index] = 0.0 |
|
|
|
loss_mask[input_ids == eod_token] = 1.0 |
|
return loss_mask |
|
@add_start_docstrings_to_model_forward(YUAN_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, YuanForCausalLM |
|
|
|
>>> model = YuanForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
|
|
>>> prompt = "Hey, are you consciours? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
|
|
logits = self.lm_head(hidden_states) |
|
loss = None |
|
if labels is not None: |
|
if self.use_loss_mask: |
|
loss_mask = self.get_loss_mask(input_ids, labels, self.eod_token, self.sep_token) |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
if self.use_loss_mask: |
|
loss_fct = CrossEntropyLoss(reduction='none') |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
loss = torch.sum(loss * loss_mask) / loss_mask.sum() |
|
else: |
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) |
|
return reordered_past |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The Yuan Model transformer with a sequence classification head on top (linear layer). |
|
|
|
[`YuanForSequenceClassification`] uses the last token in order to do the classification, as other causal models |
|
(e.g. GPT-2) do. |
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a |
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If |
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the |
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in |
|
each row of the batch). |
|
""", |
|
YUAN_START_DOCSTRING, |
|
) |
|
class YuanForSequenceClassification(YuanPreTrainedModel): |
|
|
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.model = YuanModel(config) |
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(YUAN_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
transformer_outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size = input_ids.shape[0] |
|
else: |
|
batch_size = inputs_embeds.shape[0] |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device) |
|
else: |
|
sequence_lengths = -1 |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
|
|
|
|
|