--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: roberta-large-finetuned-ours-DS results: [] --- # roberta-large-finetuned-ours-DS This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8358 - Accuracy: 0.71 - Precision: 0.6611 - Recall: 0.6691 - F1: 0.6570 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0561 | 0.99 | 99 | 0.8773 | 0.615 | 0.4054 | 0.5584 | 0.4591 | | 0.762 | 1.98 | 198 | 0.6514 | 0.715 | 0.6735 | 0.6672 | 0.6588 | | 0.5661 | 2.97 | 297 | 0.6806 | 0.71 | 0.6764 | 0.6608 | 0.6435 | | 0.3699 | 3.96 | 396 | 0.8358 | 0.71 | 0.6611 | 0.6691 | 0.6570 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1