Iamvincent commited on
Commit
90885fd
1 Parent(s): 24a59c6

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -1,11 +1,10 @@
1
  ---
 
2
  tags:
3
  - LunarLander-v2
4
- - ppo
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
- - custom-implementation
8
- - deep-rl-course
9
  model-index:
10
  - name: PPO
11
  results:
@@ -17,45 +16,22 @@ model-index:
17
  type: LunarLander-v2
18
  metrics:
19
  - type: mean_reward
20
- value: -16.04 +/- 46.29
21
  name: mean_reward
22
  verified: false
23
  ---
24
 
25
- # PPO Agent Playing LunarLander-v2
 
 
26
 
27
- This is a trained model of a PPO agent playing LunarLander-v2.
28
-
29
- # Hyperparameters
30
- ```python
31
- {'exp_name': 'ppo'
32
- 'seed': 1
33
- 'torch_deterministic': True
34
- 'cuda': True
35
- 'track': False
36
- 'wandb_project_name': 'cleanRL'
37
- 'wandb_entity': None
38
- 'capture_video': False
39
- 'env_id': 'LunarLander-v2'
40
- 'total_timesteps': 500000
41
- 'learning_rate': 0.00025
42
- 'num_envs': 16
43
- 'num_steps': 128
44
- 'anneal_lr': True
45
- 'gae': True
46
- 'gamma': 0.99
47
- 'gae_lambda': 0.95
48
- 'num_minibatches': 4
49
- 'update_epochs': 4
50
- 'norm_adv': True
51
- 'clip_coef': 0.1
52
- 'clip_vloss': True
53
- 'ent_coef': 0.01
54
- 'vf_coef': 0.5
55
- 'max_grad_norm': 0.5
56
- 'target_kl': None
57
- 'repo_id': 'Iamvincent/ppo-LunarLander-v2'
58
- 'batch_size': 2048
59
- 'minibatch_size': 512}
60
- ```
61
-
 
1
  ---
2
+ library_name: stable-baselines3
3
  tags:
4
  - LunarLander-v2
 
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
+ - stable-baselines3
 
8
  model-index:
9
  - name: PPO
10
  results:
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 253.81 +/- 13.14
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f85ca402820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f85ca4028b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f85ca402940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f85ca4029d0>", "_build": "<function ActorCriticPolicy._build at 0x7f85ca402a60>", "forward": "<function ActorCriticPolicy.forward at 0x7f85ca402af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f85ca402b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f85ca402c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f85ca402ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f85ca402d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f85ca402dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f85ca400690>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670445586886204700, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEAjML4ZA4o/8vcav1mmEL/Vgvy9DsJZvgAAAAAAAAAALb6SvnZBjj+Ijfq9PpebvnhUnr5IKQg+AAAAAAAAAAAAVeg8n/2su3ovXbwZCc07P8ANPTWvurwAAIA/AACAP5pklT6D6y8/nFUEvVmLqL7HHwc+f00nPAAAAAAAAAAAMwUQPAoUPLvt1cU8oosxPYPAYLyf3BM+AACAPwAAgD8A9Cw8QzonvHJ/Tbz5Soo8cSOkPXtdZL0AAIA/AACAPzNJED61mr0/8/X2PoQ4bL7utwg9yk02PgAAAAAAAAAA5h/1PdcjPz4wvWS9u55KvqbYtTwQWAU8AAAAAAAAAABT/mo+9GwnvSJRBz2AZLG7+3WSvgncgbwAAIA/AACAP80M7Dl7Eqy6ILYctJwQQq/1ETa6dDujMwAAgD8AAIA/5jYaPUWsDj7z5K694vJWvs0I27w/5AI9AAAAAAAAAAAzxDq9b0gQPmtTeT4XoHO+6Zu2PY1rnzwAAAAAAAAAALoXL76NV4k/S+0Hvysh275sNhG+Y2FSvgAAAAAAAAAAM9yFPFDLtj9wQKk+z4PLPVpLmLxyoJe9AAAAAAAAAADz4fE9MQIOPsYBk76VScK9BEuRvdWQsbwAAAAAAAAAAE3vub07Edu8UoLxPAm+Xj0Lsxe8W3yHPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRDLk2HoAVkCUhpRSlIwBbJRL2YwBdJRHQJKc1Au7HyV1fZQoaAZoCWgPQwhzhAzkWbJxQJSGlFKUaBVNLwFoFkdAkp0VmBe5WnV9lChoBmgJaA9DCPc+VYWGhXJAlIaUUpRoFU0JAWgWR0CSnR/PPcBVdX2UKGgGaAloD0MIwJfCgyadckCUhpRSlGgVTRUBaBZHQJKdh+CsfaJ1fZQoaAZoCWgPQwgurYbEPcpvQJSGlFKUaBVNTAFoFkdAkp2SN83Mp3V9lChoBmgJaA9DCJMehlYnHXBAlIaUUpRoFU0eAWgWR0CSnlY2bXpXdX2UKGgGaAloD0MIZ/M4DKbvcECUhpRSlGgVTVgBaBZHQJKe+V+qioN1fZQoaAZoCWgPQwjNIhRbQQRuQJSGlFKUaBVNGQFoFkdAkp9yCnP3SXV9lChoBmgJaA9DCOV620xFjXFAlIaUUpRoFU0yAWgWR0CSoKi8FpwkdX2UKGgGaAloD0MIDW0ANiC8ckCUhpRSlGgVTQYBaBZHQJKhVS4vvjR1fZQoaAZoCWgPQwgTRUjdzkFuQJSGlFKUaBVNDAFoFkdAkqFzLns9jnV9lChoBmgJaA9DCHIaogq/yHFAlIaUUpRoFU1QAWgWR0CSoXY64lQedX2UKGgGaAloD0MIA0AVN64rcECUhpRSlGgVTTMBaBZHQJKib1yvLYB1fZQoaAZoCWgPQwgMryR5bjRyQJSGlFKUaBVNCAFoFkdAkqLBi5NGmXV9lChoBmgJaA9DCKmkTkCTCnBAlIaUUpRoFU2EAWgWR0CSpCeOXE61dX2UKGgGaAloD0MINs6mI4DtcUCUhpRSlGgVS+xoFkdAkqSP6j323HV9lChoBmgJaA9DCJ7qkJthW3FAlIaUUpRoFU0IAWgWR0CSpLgpSaVldX2UKGgGaAloD0MIVi3pKAdqcUCUhpRSlGgVTSUBaBZHQJKk60w8GLV1fZQoaAZoCWgPQwh0mC8vQBVtQJSGlFKUaBVNDQFoFkdAkqUdFnZkCnV9lChoBmgJaA9DCMb3xaUqgTNAlIaUUpRoFUvnaBZHQJKlKWldkax1fZQoaAZoCWgPQwjI0ocuqLlvQJSGlFKUaBVNJwFoFkdAkqXIY3vQW3V9lChoBmgJaA9DCD1GeealSHJAlIaUUpRoFU02AWgWR0CSpq38n/kvdX2UKGgGaAloD0MIAWxAhDjmakCUhpRSlGgVTSUBaBZHQJKoPm5lOGl1fZQoaAZoCWgPQwg+JlKaDfpwQJSGlFKUaBVNAgFoFkdAkqk9Net0WHV9lChoBmgJaA9DCDxodt1bC3BAlIaUUpRoFU1VAWgWR0CSqVkrwvxpdX2UKGgGaAloD0MIGQKAY0+JckCUhpRSlGgVTSIBaBZHQJKqTn0TURZ1fZQoaAZoCWgPQwhFgqlm1k9yQJSGlFKUaBVNJwFoFkdAkqp6/ub7THV9lChoBmgJaA9DCAT+8PNfY2xAlIaUUpRoFU0VAWgWR0CSqw7QswtbdX2UKGgGaAloD0MIw4L7AQ9lcUCUhpRSlGgVTRQBaBZHQJKrWQ6p5u91fZQoaAZoCWgPQwh2bW+3pLlxQJSGlFKUaBVNAQFoFkdAkqybd8Aq/nV9lChoBmgJaA9DCII4DycwhXJAlIaUUpRoFU0OAWgWR0CSrTczZYgadX2UKGgGaAloD0MI3QvMCsU1cECUhpRSlGgVTQMBaBZHQJKuLphWo3t1fZQoaAZoCWgPQwhkc9U8x1NwQJSGlFKUaBVNKAFoFkdAkq6bq2SdOXV9lChoBmgJaA9DCBzQ0hWsEnBAlIaUUpRoFU0yAWgWR0CSrwqFyq+8dX2UKGgGaAloD0MInMHfL+bJcECUhpRSlGgVTUsBaBZHQJKvm/nGKht1fZQoaAZoCWgPQwgEyNCxA1lxQJSGlFKUaBVNaQFoFkdAkq/C9/SYxHV9lChoBmgJaA9DCInwL4LGAW5AlIaUUpRoFU0YAWgWR0CSr+lQMx46dX2UKGgGaAloD0MIqmQAqOLiPECUhpRSlGgVS9RoFkdAkrAeeJ53T3V9lChoBmgJaA9DCELqdvaVoHBAlIaUUpRoFU0PAWgWR0CSsN/5LytndX2UKGgGaAloD0MICW8PQkAiNECUhpRSlGgVS9ZoFkdAkrE1aW5Yo3V9lChoBmgJaA9DCHHl7J2Rw3BAlIaUUpRoFU0yAWgWR0CSstzzErGzdX2UKGgGaAloD0MIBAMIH8q8b0CUhpRSlGgVTSUBaBZHQJKzh3gUDdR1fZQoaAZoCWgPQwgYCAJk6GdtQJSGlFKUaBVNCAFoFkdAkrOlOwgTy3V9lChoBmgJaA9DCHZUNUFUjnJAlIaUUpRoFU0aAWgWR0CSs+Go73fydX2UKGgGaAloD0MI+G9enPgdUkCUhpRSlGgVS7xoFkdAkrRDFVDKHXV9lChoBmgJaA9DCFfRH5p5rG5AlIaUUpRoFU0cAWgWR0CStXFLFn7IdX2UKGgGaAloD0MI+Ki/XuFWcUCUhpRSlGgVTRABaBZHQJLJUre67NB1fZQoaAZoCWgPQwjKbfse9QNwQJSGlFKUaBVL9WgWR0CSycSMLncMdX2UKGgGaAloD0MI2Xkbmx3acECUhpRSlGgVS/ZoFkdAksont8eCCnV9lChoBmgJaA9DCKM/NPPkJ3JAlIaUUpRoFU0YAWgWR0CSyyayrxRVdX2UKGgGaAloD0MIYi6p2q4EcECUhpRSlGgVTTIBaBZHQJLLTXg9/z91fZQoaAZoCWgPQwjltKfkHEJwQJSGlFKUaBVNSgFoFkdAks1qpLmITHV9lChoBmgJaA9DCL73N2jv03BAlIaUUpRoFU0jAWgWR0CSzZ7D2rXEdX2UKGgGaAloD0MIEOoihbIMRUCUhpRSlGgVS99oFkdAks5GK64DtHV9lChoBmgJaA9DCKc8uhGWFnNAlIaUUpRoFU1ZAWgWR0CSzy4RVZLadX2UKGgGaAloD0MImDJwQIsPcUCUhpRSlGgVTQQBaBZHQJLPZfNRm9R1fZQoaAZoCWgPQwjW5CmraTJxQJSGlFKUaBVNHwFoFkdAks+OTvAoHHV9lChoBmgJaA9DCMHlsWbkN25AlIaUUpRoFU0KAWgWR0CS0FxtYSxrdX2UKGgGaAloD0MIoGtfQO8tckCUhpRSlGgVTSkBaBZHQJLQinFYMfB1fZQoaAZoCWgPQwjXMa64OHVvQJSGlFKUaBVNAAFoFkdAktJ7DQ7cPHV9lChoBmgJaA9DCE/mH32TtFBAlIaUUpRoFUvsaBZHQJLSpYyO7xx1fZQoaAZoCWgPQwiaIyu/jF5uQJSGlFKUaBVNNQFoFkdAktM0RWcSXnV9lChoBmgJaA9DCLgehesRpHBAlIaUUpRoFU0IAWgWR0CS00VcUucudX2UKGgGaAloD0MIRu7p6o6eYECUhpRSlGgVTegDaBZHQJLT2vkili11fZQoaAZoCWgPQwi1xTU+kz1xQJSGlFKUaBVNDAFoFkdAktTl/H5rQHV9lChoBmgJaA9DCNgo6zfTy3FAlIaUUpRoFU0IAWgWR0CS1s8xKxs3dX2UKGgGaAloD0MIkZkLXJ5obUCUhpRSlGgVTWMBaBZHQJLX7G6wt8N1fZQoaAZoCWgPQwhIT5FDxHZtQJSGlFKUaBVNCgFoFkdAktiUhV2ic3V9lChoBmgJaA9DCE1qaAOwO21AlIaUUpRoFU0HAWgWR0CS2LDMeOn3dX2UKGgGaAloD0MISDZXzTNEckCUhpRSlGgVTQUBaBZHQJLZmhBZ6ld1fZQoaAZoCWgPQwh1djI4SvxvQJSGlFKUaBVNBAFoFkdAktnFyeZof3V9lChoBmgJaA9DCCXP9X14CHNAlIaUUpRoFU0hAWgWR0CS2cKw6hg3dX2UKGgGaAloD0MIVydnKO60bkCUhpRSlGgVTW0BaBZHQJLapcgQpWp1fZQoaAZoCWgPQwh9PzVeeoNyQJSGlFKUaBVNcQFoFkdAktteZXuE3HV9lChoBmgJaA9DCP5D+u2roHBAlIaUUpRoFUv9aBZHQJLbkxN7Bwd1fZQoaAZoCWgPQwjluFM6GDlzQJSGlFKUaBVNJwFoFkdAktzPD1oQF3V9lChoBmgJaA9DCL8PBwlRS3JAlIaUUpRoFU0VAWgWR0CS3NsGgSOBdX2UKGgGaAloD0MI0bLuH4vxbUCUhpRSlGgVTQoBaBZHQJLeH3ai9Ix1fZQoaAZoCWgPQwgROBJo8B5yQJSGlFKUaBVNSAFoFkdAkt6Tyz5XVHV9lChoBmgJaA9DCKX2ItpOxnFAlIaUUpRoFU0FAWgWR0CS393hn8KpdX2UKGgGaAloD0MIH9jxX2AnckCUhpRSlGgVTWABaBZHQJLgEf5k9U11fZQoaAZoCWgPQwg2HQHcLGNyQJSGlFKUaBVL9mgWR0CS4Fcpb2UTdX2UKGgGaAloD0MI3e9QFOiFcECUhpRSlGgVTQABaBZHQJLhYC4jKPp1fZQoaAZoCWgPQwi2TfG4qB5ZQJSGlFKUaBVN6ANoFkdAkuHjPKMefnV9lChoBmgJaA9DCKLrwg9OV3FAlIaUUpRoFUvtaBZHQJLinGDL8rJ1fZQoaAZoCWgPQwhWfa62YuZwQJSGlFKUaBVNRQFoFkdAkuOc4PwuunV9lChoBmgJaA9DCF5HHLJBcXBAlIaUUpRoFU0xAWgWR0CS4+0I1LrYdX2UKGgGaAloD0MI2sngKHm6cECUhpRSlGgVTTcBaBZHQJLkSMAFPi11fZQoaAZoCWgPQwiEhChf0IJwQJSGlFKUaBVNCgFoFkdAkuRZYLb5/XV9lChoBmgJaA9DCD85ChDFIXBAlIaUUpRoFU1HAWgWR0CS5LvxH5JsdX2UKGgGaAloD0MINCvbhzxrcUCUhpRSlGgVTSIBaBZHQJLlNi+cpb51fZQoaAZoCWgPQwh5P26/fGhuQJSGlFKUaBVNAwFoFkdAkuVk52hZhnV9lChoBmgJaA9DCJRrCmR29W5AlIaUUpRoFU0RAWgWR0CS5ckd3jdYdX2UKGgGaAloD0MI5C1XP7YWc0CUhpRSlGgVS+toFkdAkuYohQm/nHV9lChoBmgJaA9DCJrsn6cBPHNAlIaUUpRoFU0tAWgWR0CS55JBgNPQdX2UKGgGaAloD0MIqMMKt3z3cUCUhpRSlGgVTSYBaBZHQJLo3v3JxNt1fZQoaAZoCWgPQwigNqrTQTVwQJSGlFKUaBVNEwFoFkdAkupa4x1xKnV9lChoBmgJaA9DCFG+oIWE2WxAlIaUUpRoFU1BAWgWR0CS6ltDUmUodX2UKGgGaAloD0MIf93pzhPlcECUhpRSlGgVTU0BaBZHQJLqflq8Djl1fZQoaAZoCWgPQwg7qS9LOyBxQJSGlFKUaBVNEwFoFkdAkuscl1KXfXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efcfe88e9d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efcfe88ea60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efcfe88eaf0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efcfe88eb80>", "_build": "<function ActorCriticPolicy._build at 0x7efcfe88ec10>", "forward": "<function ActorCriticPolicy.forward at 0x7efcfe88eca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efcfe88ed30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efcfe88edc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7efcfe88ee50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efcfe88eee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efcfe88ef70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efcfe891040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efcfe8876c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677606902854704843, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAECk/70ouLU+ir6uPebRh77ynQG9RbPgPAAAAAAAAAAAMyVgPF5Apj8WznQ9wbLVvlcQGzyehNO7AAAAAAAAAACzGKS9e8asuvx9k7sNQ/A2qdFkuhXxVrYAAIA/AACAPxpKP72Prmq6Ussmu6v2c7SnJ1Q7JIZDOgAAgD8AAIA/mjZPPcOBaLq2a1i7icJotnDlY7qlutY1AACAPwAAAABaFMw9XJ9FujyZk7sNsuA3nWSFu4oKMbcAAAAAAACAP0A7cb5L9WA/1BAzPRVrub6lTZm9TQL5PQAAAAAAAAAAAAJuPtWBaT9OefA8UaG6vlcwCz7IU5q9AAAAAAAAAAA6w1Q+NOqeP3fKwj4g79u+5q6ZPq7NuTwAAAAAAAAAAE2rjD7fCKU+bXZtvpklUb7M+J+9Tek+PQAAAAAAAAAAgBR9PUiLnrqk27A5nFu+tQN6gzruQcu4AACAPwAAgD/aJsO9KfgSutHRSTuf8Us4zzK5ubve+LkAAIA/AACAP6ZSsj0p+Dy6AygFuqrGcrYQSLA5slsYOQAAgD8AAAAAzQmPPRRCm7qtkKS7ySApOMT/FLszGgI3AACAPwAAgD/NZlS94VyRuuor2LqCQ/e1AbYbOD2y+jkAAIA/AACAP80K6TyuWZC6vmAfu7qMUbblviq6f0E4OgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBW7dzdM/Y0CUhpRSlIwBbJRN6AOMAXSUR0CSQfmE4//vdX2UKGgGaAloD0MIis3HtSHsZECUhpRSlGgVTegDaBZHQJJCfE5yU9p1fZQoaAZoCWgPQwi5cCAki8xjQJSGlFKUaBVN6ANoFkdAkkOY/FBIF3V9lChoBmgJaA9DCCLBVDNr01BAlIaUUpRoFUv4aBZHQJJENdRiw0R1fZQoaAZoCWgPQwi6gm3Ek79mQJSGlFKUaBVN6ANoFkdAkkTY7A+IM3V9lChoBmgJaA9DCEd0z7rG7WVAlIaUUpRoFU3oA2gWR0CSU/+5OJtSdX2UKGgGaAloD0MIsaVHU717YUCUhpRSlGgVTegDaBZHQJJYPLA57w91fZQoaAZoCWgPQwhxrIvb6MBmQJSGlFKUaBVN6ANoFkdAkmcSgkC3gHV9lChoBmgJaA9DCImxTL9Eo2RAlIaUUpRoFU3oA2gWR0CShSwhGH58dX2UKGgGaAloD0MITmN7LehsZECUhpRSlGgVTegDaBZHQJKIslD4QBh1fZQoaAZoCWgPQwiNCMbBpaplQJSGlFKUaBVN6ANoFkdAkokPZ7HAAXV9lChoBmgJaA9DCCaKkLodfmJAlIaUUpRoFU3oA2gWR0CSidf/FR51dX2UKGgGaAloD0MIxEFClK/5ZUCUhpRSlGgVTegDaBZHQJKM8dCE6DJ1fZQoaAZoCWgPQwiSQINNnd1hQJSGlFKUaBVN6ANoFkdAkpDqvA44qHV9lChoBmgJaA9DCMcqpWd6QGZAlIaUUpRoFU3oA2gWR0CSkX+CbtqpdX2UKGgGaAloD0MIPpKSHgbzYUCUhpRSlGgVTegDaBZHQJKSkcrAgxJ1fZQoaAZoCWgPQwhp5POKp9ZmQJSGlFKUaBVN6ANoFkdAkp+W9+PRzHV9lChoBmgJaA9DCH/4+e9B12RAlIaUUpRoFU3oA2gWR0CSn/UwSJ0odX2UKGgGaAloD0MIxlBOtKudYkCUhpRSlGgVTegDaBZHQJKgsuzyBkJ1fZQoaAZoCWgPQwiSO2wiMzdlQJSGlFKUaBVN6ANoFkdAkqEepwS8J3V9lChoBmgJaA9DCB09fm/TFWdAlIaUUpRoFU3oA2gWR0CSoZsv7FbWdX2UKGgGaAloD0MIKuEJvf7iXkCUhpRSlGgVTegDaBZHQJKsdNucc2l1fZQoaAZoCWgPQwgEr5Y7M3ZgQJSGlFKUaBVN6ANoFkdAkrDfek56t3V9lChoBmgJaA9DCGowDcNHGWNAlIaUUpRoFU3oA2gWR0CSwPh24d6tdX2UKGgGaAloD0MITb1uERjUX0CUhpRSlGgVTegDaBZHQJLbkwpON5t1fZQoaAZoCWgPQwheY5eoXm5jQJSGlFKUaBVN6ANoFkdAkt4kIsyzonV9lChoBmgJaA9DCHh6pSxD8F5AlIaUUpRoFU3oA2gWR0CS3mJ0W/JvdX2UKGgGaAloD0MIO4xJfy82ZECUhpRSlGgVTegDaBZHQJLe8eeWfK91fZQoaAZoCWgPQwjPhZFe1AJeQJSGlFKUaBVN6ANoFkdAkuGZDmbLEHV9lChoBmgJaA9DCLYsX5dhbWNAlIaUUpRoFU3oA2gWR0CS5aL5RCQcdX2UKGgGaAloD0MI/Ul87gTnZkCUhpRSlGgVTegDaBZHQJLmKgAZKnN1fZQoaAZoCWgPQwhcOXtntLlhQJSGlFKUaBVN6ANoFkdAkudEhJRO13V9lChoBmgJaA9DCBNhw9OrL2BAlIaUUpRoFU3oA2gWR0CS9oGZeAuqdX2UKGgGaAloD0MIWixF8hW3ZkCUhpRSlGgVTegDaBZHQJL2/IyTINp1fZQoaAZoCWgPQwhJL2r3K+1gQJSGlFKUaBVN6ANoFkdAkvgEmtyPuHV9lChoBmgJaA9DCL5MFCF1YmFAlIaUUpRoFU3oA2gWR0CS+KFdLQHBdX2UKGgGaAloD0MIf4eiQJ+VX0CUhpRSlGgVTegDaBZHQJL5S+ZgG8p1fZQoaAZoCWgPQwgw1GGF2/ViQJSGlFKUaBVN6ANoFkdAkwZx5gPVeHV9lChoBmgJaA9DCJtY4Cu6c21AlIaUUpRoFU3tAWgWR0CTBzQSSNfgdX2UKGgGaAloD0MIVijS/Zy+ZUCUhpRSlGgVTegDaBZHQJMKb3ta6jF1fZQoaAZoCWgPQwjhehSux0xjQJSGlFKUaBVN6ANoFkdAkxXDm4iHI3V9lChoBmgJaA9DCLQglPfx2WNAlIaUUpRoFU3oA2gWR0CTG0cjJMg2dX2UKGgGaAloD0MIGAeXjrnSZUCUhpRSlGgVTegDaBZHQJM03U3GXHB1fZQoaAZoCWgPQwhIFcWrLANjQJSGlFKUaBVN6ANoFkdAkzVE1Muez3V9lChoBmgJaA9DCAFolC79hWVAlIaUUpRoFU3oA2gWR0CTNiAcT8HfdX2UKGgGaAloD0MIMnOBy2P2ZkCUhpRSlGgVTegDaBZHQJM6MgaFVT91fZQoaAZoCWgPQwgdHVcjO09nQJSGlFKUaBVN6ANoFkdAkz+AgDA8CHV9lChoBmgJaA9DCDm0yHY+pWRAlIaUUpRoFU3oA2gWR0CTQKUipvP1dX2UKGgGaAloD0MIKNU+HY+bT0CUhpRSlGgVS9poFkdAk0YrIxQBP3V9lChoBmgJaA9DCEHvjSGAZGBAlIaUUpRoFU3oA2gWR0CTTdWCmMwUdX2UKGgGaAloD0MI+UhKephGZUCUhpRSlGgVTegDaBZHQJNOLviLl3h1fZQoaAZoCWgPQwi9NbBVgixnQJSGlFKUaBVN6ANoFkdAk07UIkZ75XV9lChoBmgJaA9DCE+Q2O6eA2JAlIaUUpRoFU3oA2gWR0CTTzeJpFkQdX2UKGgGaAloD0MI+yDLggmeY0CUhpRSlGgVTegDaBZHQJNPniZOSGJ1fZQoaAZoCWgPQwh0CvKzkfpsQJSGlFKUaBVN0gNoFkdAk1f3ZTQ3P3V9lChoBmgJaA9DCKcGms+5BWBAlIaUUpRoFU3oA2gWR0CTWgDfWMCLdX2UKGgGaAloD0MIQC/cuTAqMkCUhpRSlGgVS/VoFkdAk1rkpuuRtHV9lChoBmgJaA9DCOc3TDRI1UJAlIaUUpRoFUvraBZHQJNbslLOAy51fZQoaAZoCWgPQwgfTfVk/ttlQJSGlFKUaBVN6ANoFkdAk10TJIUah3V9lChoBmgJaA9DCEFIFjABxW1AlIaUUpRoFU1VA2gWR0CTZzH3lCC0dX2UKGgGaAloD0MIFajF4OEmZUCUhpRSlGgVTegDaBZHQJNo485jpcJ1fZQoaAZoCWgPQwgZHCWvzqlhQJSGlFKUaBVN6ANoFkdAk2/ixqwhXHV9lChoBmgJaA9DCOl8eJYg+2NAlIaUUpRoFU3oA2gWR0CTh/gh8pkPdX2UKGgGaAloD0MIAYblz7e/XUCUhpRSlGgVTegDaBZHQJOIvLbHp8p1fZQoaAZoCWgPQwgo1NNHYL9mQJSGlFKUaBVN6ANoFkdAk5BmUjcEeXV9lChoBmgJaA9DCLOY2HxcemJAlIaUUpRoFU3oA2gWR0CTkacf/3nIdX2UKGgGaAloD0MIOGqF6TsycECUhpRSlGgVTVABaBZHQJOTQgU1yeZ1fZQoaAZoCWgPQwjcLF4sDItuQJSGlFKUaBVNgwFoFkdAk5TCTMaCMHV9lChoBmgJaA9DCDzAkxYuLmRAlIaUUpRoFU3oA2gWR0CTlqdjG1hLdX2UKGgGaAloD0MIH/ZCAdtoYkCUhpRSlGgVTegDaBZHQJOdLtF8XvZ1fZQoaAZoCWgPQwhvYkhOJlxjQJSGlFKUaBVN6ANoFkdAk53Ioy9EkXV9lChoBmgJaA9DCO8eoPtyxmVAlIaUUpRoFU3oA2gWR0CTnn6r/82rdX2UKGgGaAloD0MI4qyImmhlZ0CUhpRSlGgVTegDaBZHQJOqcOLBKth1fZQoaAZoCWgPQwjpSZnUUK5jQJSGlFKUaBVN6ANoFkdAk61VTm4iHXV9lChoBmgJaA9DCOnzUUac/XBAlIaUUpRoFU2wAWgWR0CTraokAxSHdX2UKGgGaAloD0MISIszhrlNZECUhpRSlGgVTegDaBZHQJOumr/82rJ1fZQoaAZoCWgPQwh6q65DtcplQJSGlFKUaBVN6ANoFkdAk6+nZf2K23V9lChoBmgJaA9DCCcXY2AdHGJAlIaUUpRoFU3oA2gWR0CTsWhjvuw5dX2UKGgGaAloD0MIuoYZGk/8YECUhpRSlGgVTegDaBZHQJO/V3yI55t1fZQoaAZoCWgPQwihvmVOl3VnQJSGlFKUaBVN6ANoFkdAk8HneSB9TnV9lChoBmgJaA9DCKZIvhLIAGVAlIaUUpRoFU3oA2gWR0CTwrlT3qRmdX2UKGgGaAloD0MI4ng+A6o8cUCUhpRSlGgVTcoCaBZHQJPep1Oj7AN1fZQoaAZoCWgPQwgBp3fxfr9dQJSGlFKUaBVN6ANoFkdAk+Dg71ZkkXV9lChoBmgJaA9DCM07TtERwWFAlIaUUpRoFU3oA2gWR0CT4sO6NEPUdX2UKGgGaAloD0MI3sfRHNlpZ0CUhpRSlGgVTegDaBZHQJPnxUcXFcZ1fZQoaAZoCWgPQwj+1eO+VfduQJSGlFKUaBVNNgNoFkdAk+hnnIQvpXV9lChoBmgJaA9DCI6PFmeM0WBAlIaUUpRoFU3oA2gWR0CT6tsaKk2xdX2UKGgGaAloD0MIXjC45o5cW0CUhpRSlGgVTegDaBZHQJP0J9x6v7p1fZQoaAZoCWgPQwg6eZEJeNpiQJSGlFKUaBVN6ANoFkdAk/4NEkSmInV9lChoBmgJaA9DCM9lahI8TmJAlIaUUpRoFU3oA2gWR0CUABlMyrPudX2UKGgGaAloD0MIGlOwxlnkZkCUhpRSlGgVTegDaBZHQJQAViz9jwx1fZQoaAZoCWgPQwibkNYY9NVjQJSGlFKUaBVN6ANoFkdAlAEMVQAMlXV9lChoBmgJaA9DCEBtVKeDOWFAlIaUUpRoFU3oA2gWR0CUAd9itq59dX2UKGgGaAloD0MIqcE0DB8fZUCUhpRSlGgVTegDaBZHQJQDFQxesxR1fZQoaAZoCWgPQwhr2O+JtSZxQJSGlFKUaBVNXgJoFkdAlAz8s6JZXHV9lChoBmgJaA9DCOhPG9Vp6XFAlIaUUpRoFU33AmgWR0CUDQzHjp9rdX2UKGgGaAloD0MIbZG0G30AbkCUhpRSlGgVTTIBaBZHQJQQXwBo24x1fZQoaAZoCWgPQwgDste7v01hQJSGlFKUaBVN6ANoFkdAlBDUb961LXV9lChoBmgJaA9DCCNOJ9nqvGRAlIaUUpRoFU3oA2gWR0CUEv5jYqXodX2UKGgGaAloD0MIZfz7jAvsZECUhpRSlGgVTegDaBZHQJQTt0Rvm5l1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e44135333daac3fca176169cfb7ea552e31ff0675359f8597d18d7cab80f73c
3
+ size 147420
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7efcfe88e9d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efcfe88ea60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efcfe88eaf0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efcfe88eb80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7efcfe88ec10>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7efcfe88eca0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efcfe88ed30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efcfe88edc0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7efcfe88ee50>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efcfe88eee0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efcfe88ef70>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efcfe891040>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7efcfe8876c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677606902854704843,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAECk/70ouLU+ir6uPebRh77ynQG9RbPgPAAAAAAAAAAAMyVgPF5Apj8WznQ9wbLVvlcQGzyehNO7AAAAAAAAAACzGKS9e8asuvx9k7sNQ/A2qdFkuhXxVrYAAIA/AACAPxpKP72Prmq6Ussmu6v2c7SnJ1Q7JIZDOgAAgD8AAIA/mjZPPcOBaLq2a1i7icJotnDlY7qlutY1AACAPwAAAABaFMw9XJ9FujyZk7sNsuA3nWSFu4oKMbcAAAAAAACAP0A7cb5L9WA/1BAzPRVrub6lTZm9TQL5PQAAAAAAAAAAAAJuPtWBaT9OefA8UaG6vlcwCz7IU5q9AAAAAAAAAAA6w1Q+NOqeP3fKwj4g79u+5q6ZPq7NuTwAAAAAAAAAAE2rjD7fCKU+bXZtvpklUb7M+J+9Tek+PQAAAAAAAAAAgBR9PUiLnrqk27A5nFu+tQN6gzruQcu4AACAPwAAgD/aJsO9KfgSutHRSTuf8Us4zzK5ubve+LkAAIA/AACAP6ZSsj0p+Dy6AygFuqrGcrYQSLA5slsYOQAAgD8AAAAAzQmPPRRCm7qtkKS7ySApOMT/FLszGgI3AACAPwAAgD/NZlS94VyRuuor2LqCQ/e1AbYbOD2y+jkAAIA/AACAP80K6TyuWZC6vmAfu7qMUbblviq6f0E4OgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBW7dzdM/Y0CUhpRSlIwBbJRN6AOMAXSUR0CSQfmE4//vdX2UKGgGaAloD0MIis3HtSHsZECUhpRSlGgVTegDaBZHQJJCfE5yU9p1fZQoaAZoCWgPQwi5cCAki8xjQJSGlFKUaBVN6ANoFkdAkkOY/FBIF3V9lChoBmgJaA9DCCLBVDNr01BAlIaUUpRoFUv4aBZHQJJENdRiw0R1fZQoaAZoCWgPQwi6gm3Ek79mQJSGlFKUaBVN6ANoFkdAkkTY7A+IM3V9lChoBmgJaA9DCEd0z7rG7WVAlIaUUpRoFU3oA2gWR0CSU/+5OJtSdX2UKGgGaAloD0MIsaVHU717YUCUhpRSlGgVTegDaBZHQJJYPLA57w91fZQoaAZoCWgPQwhxrIvb6MBmQJSGlFKUaBVN6ANoFkdAkmcSgkC3gHV9lChoBmgJaA9DCImxTL9Eo2RAlIaUUpRoFU3oA2gWR0CShSwhGH58dX2UKGgGaAloD0MITmN7LehsZECUhpRSlGgVTegDaBZHQJKIslD4QBh1fZQoaAZoCWgPQwiNCMbBpaplQJSGlFKUaBVN6ANoFkdAkokPZ7HAAXV9lChoBmgJaA9DCCaKkLodfmJAlIaUUpRoFU3oA2gWR0CSidf/FR51dX2UKGgGaAloD0MIxEFClK/5ZUCUhpRSlGgVTegDaBZHQJKM8dCE6DJ1fZQoaAZoCWgPQwiSQINNnd1hQJSGlFKUaBVN6ANoFkdAkpDqvA44qHV9lChoBmgJaA9DCMcqpWd6QGZAlIaUUpRoFU3oA2gWR0CSkX+CbtqpdX2UKGgGaAloD0MIPpKSHgbzYUCUhpRSlGgVTegDaBZHQJKSkcrAgxJ1fZQoaAZoCWgPQwhp5POKp9ZmQJSGlFKUaBVN6ANoFkdAkp+W9+PRzHV9lChoBmgJaA9DCH/4+e9B12RAlIaUUpRoFU3oA2gWR0CSn/UwSJ0odX2UKGgGaAloD0MIxlBOtKudYkCUhpRSlGgVTegDaBZHQJKgsuzyBkJ1fZQoaAZoCWgPQwiSO2wiMzdlQJSGlFKUaBVN6ANoFkdAkqEepwS8J3V9lChoBmgJaA9DCB09fm/TFWdAlIaUUpRoFU3oA2gWR0CSoZsv7FbWdX2UKGgGaAloD0MIKuEJvf7iXkCUhpRSlGgVTegDaBZHQJKsdNucc2l1fZQoaAZoCWgPQwgEr5Y7M3ZgQJSGlFKUaBVN6ANoFkdAkrDfek56t3V9lChoBmgJaA9DCGowDcNHGWNAlIaUUpRoFU3oA2gWR0CSwPh24d6tdX2UKGgGaAloD0MITb1uERjUX0CUhpRSlGgVTegDaBZHQJLbkwpON5t1fZQoaAZoCWgPQwheY5eoXm5jQJSGlFKUaBVN6ANoFkdAkt4kIsyzonV9lChoBmgJaA9DCHh6pSxD8F5AlIaUUpRoFU3oA2gWR0CS3mJ0W/JvdX2UKGgGaAloD0MIO4xJfy82ZECUhpRSlGgVTegDaBZHQJLe8eeWfK91fZQoaAZoCWgPQwjPhZFe1AJeQJSGlFKUaBVN6ANoFkdAkuGZDmbLEHV9lChoBmgJaA9DCLYsX5dhbWNAlIaUUpRoFU3oA2gWR0CS5aL5RCQcdX2UKGgGaAloD0MI/Ul87gTnZkCUhpRSlGgVTegDaBZHQJLmKgAZKnN1fZQoaAZoCWgPQwhcOXtntLlhQJSGlFKUaBVN6ANoFkdAkudEhJRO13V9lChoBmgJaA9DCBNhw9OrL2BAlIaUUpRoFU3oA2gWR0CS9oGZeAuqdX2UKGgGaAloD0MIWixF8hW3ZkCUhpRSlGgVTegDaBZHQJL2/IyTINp1fZQoaAZoCWgPQwhJL2r3K+1gQJSGlFKUaBVN6ANoFkdAkvgEmtyPuHV9lChoBmgJaA9DCL5MFCF1YmFAlIaUUpRoFU3oA2gWR0CS+KFdLQHBdX2UKGgGaAloD0MIf4eiQJ+VX0CUhpRSlGgVTegDaBZHQJL5S+ZgG8p1fZQoaAZoCWgPQwgw1GGF2/ViQJSGlFKUaBVN6ANoFkdAkwZx5gPVeHV9lChoBmgJaA9DCJtY4Cu6c21AlIaUUpRoFU3tAWgWR0CTBzQSSNfgdX2UKGgGaAloD0MIVijS/Zy+ZUCUhpRSlGgVTegDaBZHQJMKb3ta6jF1fZQoaAZoCWgPQwjhehSux0xjQJSGlFKUaBVN6ANoFkdAkxXDm4iHI3V9lChoBmgJaA9DCLQglPfx2WNAlIaUUpRoFU3oA2gWR0CTG0cjJMg2dX2UKGgGaAloD0MIGAeXjrnSZUCUhpRSlGgVTegDaBZHQJM03U3GXHB1fZQoaAZoCWgPQwhIFcWrLANjQJSGlFKUaBVN6ANoFkdAkzVE1Muez3V9lChoBmgJaA9DCAFolC79hWVAlIaUUpRoFU3oA2gWR0CTNiAcT8HfdX2UKGgGaAloD0MIMnOBy2P2ZkCUhpRSlGgVTegDaBZHQJM6MgaFVT91fZQoaAZoCWgPQwgdHVcjO09nQJSGlFKUaBVN6ANoFkdAkz+AgDA8CHV9lChoBmgJaA9DCDm0yHY+pWRAlIaUUpRoFU3oA2gWR0CTQKUipvP1dX2UKGgGaAloD0MIKNU+HY+bT0CUhpRSlGgVS9poFkdAk0YrIxQBP3V9lChoBmgJaA9DCEHvjSGAZGBAlIaUUpRoFU3oA2gWR0CTTdWCmMwUdX2UKGgGaAloD0MI+UhKephGZUCUhpRSlGgVTegDaBZHQJNOLviLl3h1fZQoaAZoCWgPQwi9NbBVgixnQJSGlFKUaBVN6ANoFkdAk07UIkZ75XV9lChoBmgJaA9DCE+Q2O6eA2JAlIaUUpRoFU3oA2gWR0CTTzeJpFkQdX2UKGgGaAloD0MI+yDLggmeY0CUhpRSlGgVTegDaBZHQJNPniZOSGJ1fZQoaAZoCWgPQwh0CvKzkfpsQJSGlFKUaBVN0gNoFkdAk1f3ZTQ3P3V9lChoBmgJaA9DCKcGms+5BWBAlIaUUpRoFU3oA2gWR0CTWgDfWMCLdX2UKGgGaAloD0MIQC/cuTAqMkCUhpRSlGgVS/VoFkdAk1rkpuuRtHV9lChoBmgJaA9DCOc3TDRI1UJAlIaUUpRoFUvraBZHQJNbslLOAy51fZQoaAZoCWgPQwgfTfVk/ttlQJSGlFKUaBVN6ANoFkdAk10TJIUah3V9lChoBmgJaA9DCEFIFjABxW1AlIaUUpRoFU1VA2gWR0CTZzH3lCC0dX2UKGgGaAloD0MIFajF4OEmZUCUhpRSlGgVTegDaBZHQJNo485jpcJ1fZQoaAZoCWgPQwgZHCWvzqlhQJSGlFKUaBVN6ANoFkdAk2/ixqwhXHV9lChoBmgJaA9DCOl8eJYg+2NAlIaUUpRoFU3oA2gWR0CTh/gh8pkPdX2UKGgGaAloD0MIAYblz7e/XUCUhpRSlGgVTegDaBZHQJOIvLbHp8p1fZQoaAZoCWgPQwgo1NNHYL9mQJSGlFKUaBVN6ANoFkdAk5BmUjcEeXV9lChoBmgJaA9DCLOY2HxcemJAlIaUUpRoFU3oA2gWR0CTkacf/3nIdX2UKGgGaAloD0MIOGqF6TsycECUhpRSlGgVTVABaBZHQJOTQgU1yeZ1fZQoaAZoCWgPQwjcLF4sDItuQJSGlFKUaBVNgwFoFkdAk5TCTMaCMHV9lChoBmgJaA9DCDzAkxYuLmRAlIaUUpRoFU3oA2gWR0CTlqdjG1hLdX2UKGgGaAloD0MIH/ZCAdtoYkCUhpRSlGgVTegDaBZHQJOdLtF8XvZ1fZQoaAZoCWgPQwhvYkhOJlxjQJSGlFKUaBVN6ANoFkdAk53Ioy9EkXV9lChoBmgJaA9DCO8eoPtyxmVAlIaUUpRoFU3oA2gWR0CTnn6r/82rdX2UKGgGaAloD0MI4qyImmhlZ0CUhpRSlGgVTegDaBZHQJOqcOLBKth1fZQoaAZoCWgPQwjpSZnUUK5jQJSGlFKUaBVN6ANoFkdAk61VTm4iHXV9lChoBmgJaA9DCOnzUUac/XBAlIaUUpRoFU2wAWgWR0CTraokAxSHdX2UKGgGaAloD0MISIszhrlNZECUhpRSlGgVTegDaBZHQJOumr/82rJ1fZQoaAZoCWgPQwh6q65DtcplQJSGlFKUaBVN6ANoFkdAk6+nZf2K23V9lChoBmgJaA9DCCcXY2AdHGJAlIaUUpRoFU3oA2gWR0CTsWhjvuw5dX2UKGgGaAloD0MIuoYZGk/8YECUhpRSlGgVTegDaBZHQJO/V3yI55t1fZQoaAZoCWgPQwihvmVOl3VnQJSGlFKUaBVN6ANoFkdAk8HneSB9TnV9lChoBmgJaA9DCKZIvhLIAGVAlIaUUpRoFU3oA2gWR0CTwrlT3qRmdX2UKGgGaAloD0MI4ng+A6o8cUCUhpRSlGgVTcoCaBZHQJPep1Oj7AN1fZQoaAZoCWgPQwgBp3fxfr9dQJSGlFKUaBVN6ANoFkdAk+Dg71ZkkXV9lChoBmgJaA9DCM07TtERwWFAlIaUUpRoFU3oA2gWR0CT4sO6NEPUdX2UKGgGaAloD0MI3sfRHNlpZ0CUhpRSlGgVTegDaBZHQJPnxUcXFcZ1fZQoaAZoCWgPQwj+1eO+VfduQJSGlFKUaBVNNgNoFkdAk+hnnIQvpXV9lChoBmgJaA9DCI6PFmeM0WBAlIaUUpRoFU3oA2gWR0CT6tsaKk2xdX2UKGgGaAloD0MIXjC45o5cW0CUhpRSlGgVTegDaBZHQJP0J9x6v7p1fZQoaAZoCWgPQwg6eZEJeNpiQJSGlFKUaBVN6ANoFkdAk/4NEkSmInV9lChoBmgJaA9DCM9lahI8TmJAlIaUUpRoFU3oA2gWR0CUABlMyrPudX2UKGgGaAloD0MIGlOwxlnkZkCUhpRSlGgVTegDaBZHQJQAViz9jwx1fZQoaAZoCWgPQwibkNYY9NVjQJSGlFKUaBVN6ANoFkdAlAEMVQAMlXV9lChoBmgJaA9DCEBtVKeDOWFAlIaUUpRoFU3oA2gWR0CUAd9itq59dX2UKGgGaAloD0MIqcE0DB8fZUCUhpRSlGgVTegDaBZHQJQDFQxesxR1fZQoaAZoCWgPQwhr2O+JtSZxQJSGlFKUaBVNXgJoFkdAlAz8s6JZXHV9lChoBmgJaA9DCOhPG9Vp6XFAlIaUUpRoFU33AmgWR0CUDQzHjp9rdX2UKGgGaAloD0MIbZG0G30AbkCUhpRSlGgVTTIBaBZHQJQQXwBo24x1fZQoaAZoCWgPQwgDste7v01hQJSGlFKUaBVN6ANoFkdAlBDUb961LXV9lChoBmgJaA9DCCNOJ9nqvGRAlIaUUpRoFU3oA2gWR0CUEv5jYqXodX2UKGgGaAloD0MIZfz7jAvsZECUhpRSlGgVTegDaBZHQJQTt0Rvm5l1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:169da342622d4748c93b37e264317c50bd924e5105b7d273e5b132d0a2c67e63
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74356cdc0ae963b2c453bee03d766981ba94930146be10d623cdd9b6fa4463bb
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"env_id": "LunarLander-v2", "mean_reward": -16.038426443478365, "std_reward": 46.28728191684836, "n_evaluation_episodes": 10, "eval_datetime": "2023-02-17T00:17:49.658235"}
 
1
+ {"mean_reward": 253.80852217988257, "std_reward": 13.141150536281588, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T18:17:29.655372"}