File size: 1,745 Bytes
d1a0a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83104e
 
 
d1a0a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0178713
 
 
d1a0a28
 
 
fbf4133
d1a0a28
 
 
d6ffbc9
 
e83104e
 
 
 
d1a0a28
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
base_model: distilbert-base-uncased-finetuned-sst-2-english
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sentiment-model-5000-samples
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetuning-sentiment-model-5000-samples

This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8447
- Accuracy: 0.9
- F1: 0.9343

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.0           | 1.0   | 254  | 0.9150          | 0.9044   | 0.9370 |
| 0.0001        | 2.0   | 508  | 1.0138          | 0.8911   | 0.9274 |
| 0.005         | 3.0   | 762  | 0.8602          | 0.8978   | 0.9327 |
| 0.0069        | 4.0   | 1016 | 0.8447          | 0.9      | 0.9343 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1