--- license: apache-2.0 base_model: distilbert-base-uncased-finetuned-sst-2-english tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-5000-samples results: [] --- # finetuning-sentiment-model-5000-samples This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3131 - Accuracy: 0.9067 - F1: 0.9381 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4682 | 1.0 | 254 | 0.4104 | 0.8711 | 0.9174 | | 0.2653 | 2.0 | 508 | 0.2804 | 0.8911 | 0.9276 | | 0.1757 | 3.0 | 762 | 0.2680 | 0.9067 | 0.9384 | | 0.1737 | 4.0 | 1016 | 0.3131 | 0.9067 | 0.9381 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1