File size: 26,847 Bytes
5fd0460 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 |
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:700
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Workforce Solutions is our largest reportable segment, contributing
44% of total operating revenue for 2023.
sentences:
- How much did GameStop Corp's valuation allowances increase during fiscal 2022?
- What percentage of total operating revenue for 2023 was represented by the Workforce
Solutions segment?
- Where are the majority of NIKE's footwear and apparel products manufactured?
- source_sentence: The effects of actual results differing from our assumptions and
the effects of changing assumptions are considered actuarial gains or losses.
We utilize a mark-to-market approach in recognizing actuarial gains or losses
immediately through earnings upon the annual remeasurement in the fourth quarter,
or on an interim basis as triggering events warrant remeasurement.
sentences:
- How are the company's postretirement benefit plan actuarial gains or losses recognized?
- What specific procedures did the auditors perform related to the Critical Audit
Matter of medical care services Incurred but not Reported (IBNR)?
- What strategies does the company use to manage product costs and supply?
- source_sentence: To improve the in-store shopping experience, the company invested
in wayfinding signage, store refresh packages, self-service lockers, and enhanced
checkout areas, aiming to provide easier navigation and increased convenience.
sentences:
- What are the expectations the company has for its employees in aligning with the
Code of Conduct?
- What strategies are employed to improve the in-store shopping experience?
- Where does the 10-K filing direct readers for specifics on legal proceedings involving
the company?
- source_sentence: In 2023, under pre-approved share repurchase programs, The Hershey
Company repurchased shares valued at $27.4 million.
sentences:
- What is the value of shares repurchased under the pre-approved program as stated
in The Hershey Company's 2023 Form 10-K, for the year 2023?
- What critical accounting estimates were identified as having the greatest potential
impact on the financial statements?
- What was the total net sales in fiscal 2022?
- source_sentence: During September 2023, the Company entered into a third amended
and restated revolving credit agreement with Bank of America, N.A., as administrative
agent, swing line lender and a letter of credit issuer and lender and certain
other financial institutions, as lenders thereto (the 'Amended Revolving Credit
Agreement'), which provides the Company with commitments having a maximum aggregate
principal amount of $1.25 billion, effective as of September 5, 2023. The Amended
Revolving Credit Agreement also provides for a potential additional incremental
commitment increase of up to $500.0 million subject to agreement of the lenders.
The Amended Revolving Credit Agreement contains certain financial covenants setting
forth leverage and coverage requirements, and certain other limitations typical
of an investment grade facility, including with respect to liens, mergers and
incurrence of indebtedness. The Amended Revolving Credit Agreement extends through
September 5, 2028.
sentences:
- What constitutes the largest expense in the company's various expense categories?
- What is the function of the amended revolving credit agreement that the Company
entered into with Bank of America in September 2023?
- What position does Brad D. Smith currently hold?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6617460317460317
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7933333333333333
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8365079365079365
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8850793650793651
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6617460317460317
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2644444444444444
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1673015873015873
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08850793650793651
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6617460317460317
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7933333333333333
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8365079365079365
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8850793650793651
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7731048434378245
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.737306437389771
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7413478623467549
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.660952380952381
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7880952380952381
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8352380952380952
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8834920634920634
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.660952380952381
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2626984126984127
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16704761904761903
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08834920634920633
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.660952380952381
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7880952380952381
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8352380952380952
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8834920634920634
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7712996524525622
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7355047871000246
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7396551248138244
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6507936507936508
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7795238095238095
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.823968253968254
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.873968253968254
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6507936507936508
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2598412698412698
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16479365079365077
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08739682539682538
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6507936507936508
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7795238095238095
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.823968253968254
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.873968253968254
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7614205489576108
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7255282186948864
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.729844180658852
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6217460317460317
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7541269841269841
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7987301587301587
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8546031746031746
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6217460317460317
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.25137566137566136
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15974603174603175
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08546031746031746
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6217460317460317
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7541269841269841
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7987301587301587
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8546031746031746
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7368786132926283
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6994103048626867
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.704308796361143
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.5647619047619048
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7026984126984127
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7477777777777778
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8012698412698412
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5647619047619048
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2342328042328042
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14955555555555555
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08012698412698412
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5647619047619048
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7026984126984127
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7477777777777778
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8012698412698412
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6817715934378692
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6436686192995734
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6495479778469232
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("IlhamEbdesk/bge-base-financial-matryoshka")
# Run inference
sentences = [
"During September 2023, the Company entered into a third amended and restated revolving credit agreement with Bank of America, N.A., as administrative agent, swing line lender and a letter of credit issuer and lender and certain other financial institutions, as lenders thereto (the 'Amended Revolving Credit Agreement'), which provides the Company with commitments having a maximum aggregate principal amount of $1.25 billion, effective as of September 5, 2023. The Amended Revolving Credit Agreement also provides for a potential additional incremental commitment increase of up to $500.0 million subject to agreement of the lenders. The Amended Revolving Credit Agreement contains certain financial covenants setting forth leverage and coverage requirements, and certain other limitations typical of an investment grade facility, including with respect to liens, mergers and incurrence of indebtedness. The Amended Revolving Credit Agreement extends through September 5, 2028.",
'What is the function of the amended revolving credit agreement that the Company entered into with Bank of America in September 2023?',
'What position does Brad D. Smith currently hold?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6617 |
| cosine_accuracy@3 | 0.7933 |
| cosine_accuracy@5 | 0.8365 |
| cosine_accuracy@10 | 0.8851 |
| cosine_precision@1 | 0.6617 |
| cosine_precision@3 | 0.2644 |
| cosine_precision@5 | 0.1673 |
| cosine_precision@10 | 0.0885 |
| cosine_recall@1 | 0.6617 |
| cosine_recall@3 | 0.7933 |
| cosine_recall@5 | 0.8365 |
| cosine_recall@10 | 0.8851 |
| cosine_ndcg@10 | 0.7731 |
| cosine_mrr@10 | 0.7373 |
| **cosine_map@100** | **0.7413** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.661 |
| cosine_accuracy@3 | 0.7881 |
| cosine_accuracy@5 | 0.8352 |
| cosine_accuracy@10 | 0.8835 |
| cosine_precision@1 | 0.661 |
| cosine_precision@3 | 0.2627 |
| cosine_precision@5 | 0.167 |
| cosine_precision@10 | 0.0883 |
| cosine_recall@1 | 0.661 |
| cosine_recall@3 | 0.7881 |
| cosine_recall@5 | 0.8352 |
| cosine_recall@10 | 0.8835 |
| cosine_ndcg@10 | 0.7713 |
| cosine_mrr@10 | 0.7355 |
| **cosine_map@100** | **0.7397** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6508 |
| cosine_accuracy@3 | 0.7795 |
| cosine_accuracy@5 | 0.824 |
| cosine_accuracy@10 | 0.874 |
| cosine_precision@1 | 0.6508 |
| cosine_precision@3 | 0.2598 |
| cosine_precision@5 | 0.1648 |
| cosine_precision@10 | 0.0874 |
| cosine_recall@1 | 0.6508 |
| cosine_recall@3 | 0.7795 |
| cosine_recall@5 | 0.824 |
| cosine_recall@10 | 0.874 |
| cosine_ndcg@10 | 0.7614 |
| cosine_mrr@10 | 0.7255 |
| **cosine_map@100** | **0.7298** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6217 |
| cosine_accuracy@3 | 0.7541 |
| cosine_accuracy@5 | 0.7987 |
| cosine_accuracy@10 | 0.8546 |
| cosine_precision@1 | 0.6217 |
| cosine_precision@3 | 0.2514 |
| cosine_precision@5 | 0.1597 |
| cosine_precision@10 | 0.0855 |
| cosine_recall@1 | 0.6217 |
| cosine_recall@3 | 0.7541 |
| cosine_recall@5 | 0.7987 |
| cosine_recall@10 | 0.8546 |
| cosine_ndcg@10 | 0.7369 |
| cosine_mrr@10 | 0.6994 |
| **cosine_map@100** | **0.7043** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.5648 |
| cosine_accuracy@3 | 0.7027 |
| cosine_accuracy@5 | 0.7478 |
| cosine_accuracy@10 | 0.8013 |
| cosine_precision@1 | 0.5648 |
| cosine_precision@3 | 0.2342 |
| cosine_precision@5 | 0.1496 |
| cosine_precision@10 | 0.0801 |
| cosine_recall@1 | 0.5648 |
| cosine_recall@3 | 0.7027 |
| cosine_recall@5 | 0.7478 |
| cosine_recall@10 | 0.8013 |
| cosine_ndcg@10 | 0.6818 |
| cosine_mrr@10 | 0.6437 |
| **cosine_map@100** | **0.6495** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.7273 | 1 | 0.6707 | 0.7045 | 0.7171 | 0.6067 | 0.7188 |
| 1.4545 | 2 | 0.6912 | 0.7205 | 0.7302 | 0.6313 | 0.7327 |
| **2.9091** | **4** | **0.7043** | **0.7298** | **0.7397** | **0.6495** | **0.7413** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |