File size: 26,847 Bytes
5fd0460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:700
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Workforce Solutions is our largest reportable segment, contributing
    44% of total operating revenue for 2023.
  sentences:
  - How much did GameStop Corp's valuation allowances increase during fiscal 2022?
  - What percentage of total operating revenue for 2023 was represented by the Workforce
    Solutions segment?
  - Where are the majority of NIKE's footwear and apparel products manufactured?
- source_sentence: The effects of actual results differing from our assumptions and
    the effects of changing assumptions are considered actuarial gains or losses.
    We utilize a mark-to-market approach in recognizing actuarial gains or losses
    immediately through earnings upon the annual remeasurement in the fourth quarter,
    or on an interim basis as triggering events warrant remeasurement.
  sentences:
  - How are the company's postretirement benefit plan actuarial gains or losses recognized?
  - What specific procedures did the auditors perform related to the Critical Audit
    Matter of medical care services Incurred but not Reported (IBNR)?
  - What strategies does the company use to manage product costs and supply?
- source_sentence: To improve the in-store shopping experience, the company invested
    in wayfinding signage, store refresh packages, self-service lockers, and enhanced
    checkout areas, aiming to provide easier navigation and increased convenience.
  sentences:
  - What are the expectations the company has for its employees in aligning with the
    Code of Conduct?
  - What strategies are employed to improve the in-store shopping experience?
  - Where does the 10-K filing direct readers for specifics on legal proceedings involving
    the company?
- source_sentence: In 2023, under pre-approved share repurchase programs, The Hershey
    Company repurchased shares valued at $27.4 million.
  sentences:
  - What is the value of shares repurchased under the pre-approved program as stated
    in The Hershey Company's 2023 Form 10-K, for the year 2023?
  - What critical accounting estimates were identified as having the greatest potential
    impact on the financial statements?
  - What was the total net sales in fiscal 2022?
- source_sentence: During September 2023, the Company entered into a third amended
    and restated revolving credit agreement with Bank of America, N.A., as administrative
    agent, swing line lender and a letter of credit issuer and lender and certain
    other financial institutions, as lenders thereto (the 'Amended Revolving Credit
    Agreement'), which provides the Company with commitments having a maximum aggregate
    principal amount of $1.25 billion, effective as of September 5, 2023. The Amended
    Revolving Credit Agreement also provides for a potential additional incremental
    commitment increase of up to $500.0 million subject to agreement of the lenders.
    The Amended Revolving Credit Agreement contains certain financial covenants setting
    forth leverage and coverage requirements, and certain other limitations typical
    of an investment grade facility, including with respect to liens, mergers and
    incurrence of indebtedness. The Amended Revolving Credit Agreement extends through
    September 5, 2028.
  sentences:
  - What constitutes the largest expense in the company's various expense categories?
  - What is the function of the amended revolving credit agreement that the Company
    entered into with Bank of America in September 2023?
  - What position does Brad D. Smith currently hold?
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.6617460317460317
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7933333333333333
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8365079365079365
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8850793650793651
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6617460317460317
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2644444444444444
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1673015873015873
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08850793650793651
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6617460317460317
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7933333333333333
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8365079365079365
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8850793650793651
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7731048434378245
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.737306437389771
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7413478623467549
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.660952380952381
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7880952380952381
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8352380952380952
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8834920634920634
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.660952380952381
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2626984126984127
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16704761904761903
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08834920634920633
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.660952380952381
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7880952380952381
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8352380952380952
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8834920634920634
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7712996524525622
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7355047871000246
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7396551248138244
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.6507936507936508
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7795238095238095
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.823968253968254
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.873968253968254
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6507936507936508
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2598412698412698
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16479365079365077
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08739682539682538
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6507936507936508
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7795238095238095
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.823968253968254
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.873968253968254
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7614205489576108
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7255282186948864
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.729844180658852
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.6217460317460317
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7541269841269841
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7987301587301587
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8546031746031746
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6217460317460317
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.25137566137566136
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.15974603174603175
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08546031746031746
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6217460317460317
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7541269841269841
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7987301587301587
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8546031746031746
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7368786132926283
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6994103048626867
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.704308796361143
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.5647619047619048
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7026984126984127
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7477777777777778
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8012698412698412
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5647619047619048
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2342328042328042
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14955555555555555
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08012698412698412
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5647619047619048
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7026984126984127
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7477777777777778
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8012698412698412
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6817715934378692
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6436686192995734
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6495479778469232
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("IlhamEbdesk/bge-base-financial-matryoshka")
# Run inference
sentences = [
    "During September 2023, the Company entered into a third amended and restated revolving credit agreement with Bank of America, N.A., as administrative agent, swing line lender and a letter of credit issuer and lender and certain other financial institutions, as lenders thereto (the 'Amended Revolving Credit Agreement'), which provides the Company with commitments having a maximum aggregate principal amount of $1.25 billion, effective as of September 5, 2023. The Amended Revolving Credit Agreement also provides for a potential additional incremental commitment increase of up to $500.0 million subject to agreement of the lenders. The Amended Revolving Credit Agreement contains certain financial covenants setting forth leverage and coverage requirements, and certain other limitations typical of an investment grade facility, including with respect to liens, mergers and incurrence of indebtedness. The Amended Revolving Credit Agreement extends through September 5, 2028.",
    'What is the function of the amended revolving credit agreement that the Company entered into with Bank of America in September 2023?',
    'What position does Brad D. Smith currently hold?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6617     |
| cosine_accuracy@3   | 0.7933     |
| cosine_accuracy@5   | 0.8365     |
| cosine_accuracy@10  | 0.8851     |
| cosine_precision@1  | 0.6617     |
| cosine_precision@3  | 0.2644     |
| cosine_precision@5  | 0.1673     |
| cosine_precision@10 | 0.0885     |
| cosine_recall@1     | 0.6617     |
| cosine_recall@3     | 0.7933     |
| cosine_recall@5     | 0.8365     |
| cosine_recall@10    | 0.8851     |
| cosine_ndcg@10      | 0.7731     |
| cosine_mrr@10       | 0.7373     |
| **cosine_map@100**  | **0.7413** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.661      |
| cosine_accuracy@3   | 0.7881     |
| cosine_accuracy@5   | 0.8352     |
| cosine_accuracy@10  | 0.8835     |
| cosine_precision@1  | 0.661      |
| cosine_precision@3  | 0.2627     |
| cosine_precision@5  | 0.167      |
| cosine_precision@10 | 0.0883     |
| cosine_recall@1     | 0.661      |
| cosine_recall@3     | 0.7881     |
| cosine_recall@5     | 0.8352     |
| cosine_recall@10    | 0.8835     |
| cosine_ndcg@10      | 0.7713     |
| cosine_mrr@10       | 0.7355     |
| **cosine_map@100**  | **0.7397** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6508     |
| cosine_accuracy@3   | 0.7795     |
| cosine_accuracy@5   | 0.824      |
| cosine_accuracy@10  | 0.874      |
| cosine_precision@1  | 0.6508     |
| cosine_precision@3  | 0.2598     |
| cosine_precision@5  | 0.1648     |
| cosine_precision@10 | 0.0874     |
| cosine_recall@1     | 0.6508     |
| cosine_recall@3     | 0.7795     |
| cosine_recall@5     | 0.824      |
| cosine_recall@10    | 0.874      |
| cosine_ndcg@10      | 0.7614     |
| cosine_mrr@10       | 0.7255     |
| **cosine_map@100**  | **0.7298** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6217     |
| cosine_accuracy@3   | 0.7541     |
| cosine_accuracy@5   | 0.7987     |
| cosine_accuracy@10  | 0.8546     |
| cosine_precision@1  | 0.6217     |
| cosine_precision@3  | 0.2514     |
| cosine_precision@5  | 0.1597     |
| cosine_precision@10 | 0.0855     |
| cosine_recall@1     | 0.6217     |
| cosine_recall@3     | 0.7541     |
| cosine_recall@5     | 0.7987     |
| cosine_recall@10    | 0.8546     |
| cosine_ndcg@10      | 0.7369     |
| cosine_mrr@10       | 0.6994     |
| **cosine_map@100**  | **0.7043** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.5648     |
| cosine_accuracy@3   | 0.7027     |
| cosine_accuracy@5   | 0.7478     |
| cosine_accuracy@10  | 0.8013     |
| cosine_precision@1  | 0.5648     |
| cosine_precision@3  | 0.2342     |
| cosine_precision@5  | 0.1496     |
| cosine_precision@10 | 0.0801     |
| cosine_recall@1     | 0.5648     |
| cosine_recall@3     | 0.7027     |
| cosine_recall@5     | 0.7478     |
| cosine_recall@10    | 0.8013     |
| cosine_ndcg@10      | 0.6818     |
| cosine_mrr@10       | 0.6437     |
| **cosine_map@100**  | **0.6495** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step  | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.7273     | 1     | 0.6707                 | 0.7045                 | 0.7171                 | 0.6067                | 0.7188                 |
| 1.4545     | 2     | 0.6912                 | 0.7205                 | 0.7302                 | 0.6313                | 0.7327                 |
| **2.9091** | **4** | **0.7043**             | **0.7298**             | **0.7397**             | **0.6495**            | **0.7413**             |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->